Effects of P3HT concentration on the performance of organic field effect transistors

Chun-xia Jiang , Xiao-man Cheng , Xiao-ming Wu , Xiao-yan Yang , Bin Yin , Yu-lin Hua , Jun Wei , Shou-gen Yin

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (1) : 30 -32.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (1) : 30 -32. DOI: 10.1007/s11801-011-0122-z
Article

Effects of P3HT concentration on the performance of organic field effect transistors

Author information +
History +
PDF

Abstract

Top-contact organic field effect transistors (OFETs) based on poly(3-hexylthiophene) (P3HT) with different concentrations in chloroform (CHCl3) are fabricated. The output characteristics indicate that the P3HT concentration has significant influence on the OFET devices. The performance of the devices firstly is enhanced with increasing the P3HT concentration, and then decreases. The optimized devices with the P3HT concentration of 2 mg/mL show the best performance. The field0effect mobility is up to 1.4×10−2 cm2/Vs, the threshold voltage (Vt) is as low as −20 V, and the current on/off ratio (Ion/off) is close to the order of 104. The results suggest that the P3HT aggregation patterns induced by different concentrations can improve the performance of the OFETs.

Keywords

Atomic Force Microscope Image / Threshold Voltage / Pentacene / Drain Electrode / P3HT Film

Cite this article

Download citation ▾
Chun-xia Jiang, Xiao-man Cheng, Xiao-ming Wu, Xiao-yan Yang, Bin Yin, Yu-lin Hua, Jun Wei, Shou-gen Yin. Effects of P3HT concentration on the performance of organic field effect transistors. Optoelectronics Letters, 2011, 7(1): 30-32 DOI:10.1007/s11801-011-0122-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HuitemaH. E. A., GelinckG. H., van der PuttenJ., KuijkK. E., HartC. M., CantatoreE., HerwigP. T., van BreemenA., de LeeuwD. M.. Nature, 2001, 414: 599

[2]

LiuX., BaiY., ChenL., ZhuW.-q., JiangX.-y., ZhangZ.-l.. Journal of Optoelectronics Laser, 2008, 19: 577

[3]

DongM.-j., TaoC.-l., ZhangX.-h., OuG., ZhangF.-j.. Journal of Optoelectronics Laser, 2008, 19: 161

[4]

McCullochI., HeeneyM., ChabinycM. L., DeLongchampD., KlineR. J., CoelleM., DuffyW., FischerD., GundlachD., HamadaniB., HamiltonR., RichterL., SalleoA., ShkunovM., SporroweD., TierneyS., ZhongW.. Advanced Materials, 2009, 21: 1091

[5]

BallJ. M., WobkenbergP. H., KooistraF. B., HummelenJ. C., LeeuwD. M. d., BradleyD. D. C., AnthopoulosT. D.. Synthetic Metals, 2009, 159: 2368

[6]

ZhenanB., DodabalapurA., LovingerA. J.. Applied Physics Letters, 1996, 69: 4108

[7]

OngB. S., WuY. L., LiuP., GardnerS.. Advanced Materials, 2005, 17: 1141

[8]

TsaoH. N., ChoD., AndreasenJ. W., RouhanipourA., BreibyD. W., PisulaW., MullenK.. Advanced Materials, 2009, 21: 209

[9]

KimJ. K., KimJ. M., YoonT. S., LeeH. H., JeonD., KimY. S.. J. Electr. Eng. Technol., 2009, 4: 118

[10]

GundlachD. J., JiaL. L., JacksonT. N.. IEEE Electron Device Letters, 2001, 22: 571

[11]

HuZ. Y., ChengX. M., WuR. L., WangZ. Q., YinS. G.. Chinese Physics Letters, 2009, 26: 037305

[12]

TanH. S., MathewsN., CahyadiT., ZhuF. R., MhaisalkarS. G.. Applied Physics Letters, 2009, 94: 1

[13]

ScaviaG., PorzioW., DestriS., BarbaL., ArrighettiG., MilitaS., FumagalliL., NataliD., SampietroM.. Surface Science, 2008, 602: 3106

[14]

DickeyK. C., AnthonyJ. E., LooY. L.. Advanced Materials, 2006, 18: 1721

[15]

LeeC. W., HanX. D., ChenF. M., WeiJ., ChenY., Chan-ParkM. B., LiL. J.. Advanced Materials, 2010, 22: 1278

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/