Study on electro-optic properties of two-dimensional PLZT photonic crystal band structure

kai Tong, Xiao-gang Wu, Mei-ting Wang

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (4) : 282-286.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (4) : 282-286. DOI: 10.1007/s11801-011-0118-8
Article

Study on electro-optic properties of two-dimensional PLZT photonic crystal band structure

Author information +
History +

Abstract

The band characteristics of two-dimensional (2D) lead lanthanum zirconate titanate (PLZT) photonic crystals are analyzed by finite element method. The electro-optic effect of PLZT can cause the refractive index change when it is imposed by the applied electric field, and the band structure of 2D photonic crystals based on PLZT varies accordingly. The effect of the applied electric field on the structural characteristics of the first and second band gaps in 2D PLZT photonic crystals is analyzed in detail. And the results show that for each band gap, the variations of start wavelength, cut-off wavelength and bandwidth are proportional to quadratic of the electric field.

Keywords

Band Structure / Photonic Crystal / Applied Electric Field / Optoelectronic Letter / Electric Field Change

Cite this article

Download citation ▾
kai Tong, Xiao-gang Wu, Mei-ting Wang. Study on electro-optic properties of two-dimensional PLZT photonic crystal band structure. Optoelectronics Letters, 2011, 7(4): 282‒286 https://doi.org/10.1007/s11801-011-0118-8

References

[1]
BallatoJ., JamesA.. J. Am. Ceram. Soc., 1999, 82: 2273
CrossRef Google scholar
[2]
TanabeT., NotomiM., MitsugiS., ShinyaA., KuramochiE.. Appl. Phys. Lett., 2005, 87: 151112
CrossRef Google scholar
[3]
ZhangW., GaneshN., BlockI. D., CunninghamB. T.. Sensors and Actuators B, 2008, 131: 279
CrossRef Google scholar
[4]
SeoM. K., JeongK. Y., YangJ. K., LeeY. H., ParkH. G., KimS. B.. Appl. Phys. Lett., 2009, 90: 171122
CrossRef Google scholar
[5]
ZhangH., BaiJ.-j., GuoP., WangX.-h., ChangS.-j.. Optoelectronics Letters, 2009, 5: 169
CrossRef Google scholar
[6]
MulotM., AnandS., CarlströmC. F., SwilloM., TalneauA.. Phys. Scr., 2002, T101: 106
CrossRef Google scholar
[7]
XuQ.-t., LiK., KongF.-m., LiuQ.. Optoelectronics Letters, 2009, 5: 405
CrossRef Google scholar
[8]
Ji-boB., Jun-qinW., Xi-yaoC., Jun-zhenJ., HuiL., Yi-shenQ., Ze-xuanQ.. Optoelectronics Letters, 2010, 6: 203
CrossRef Google scholar
[9]
JinG. H., ZouY. K., FuflyiginV., LinS. W., LuY. L., ZhaoJ., Cronin-GolombM.. Journal of Lightwave Technology, 2000, 18: 807
CrossRef Google scholar
[10]
OzolinshM., LacisI., PaeglisR., SternbergA., SvanbergS., Andersson-EngelsS., SwartlingJ.. Ferroelectrics, 2002, 273: 131
CrossRef Google scholar
[11]
HaertlingG. H., LandC. E.. J. Am. Ceram. Soc., 1971, 54: 1
CrossRef Google scholar
[12]
RichardA.. Soref and Brian R. BennettIEEE J. Quan. Electron., 1987, 23: 123
CrossRef Google scholar
[13]
PamulapatiJ., LoehrJ. P., SinghJ., BhattacharyaP. K., LudowiseM. J.. Superlattices and Microstructures, 1990, 8: 317
CrossRef Google scholar
[14]
ShamesP., SunP. C., FainmanY.. Physics and Simulation of Optoelecctronic Devices, 1996, 2693: 787
[15]
HironoriK., YugoN., AkiraH., KazuhiroO., TakayoshiK., EijiT.. Opt. Rev., 2010, 17: 352
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.6087047) and the Doctoral Fund of Ministry of Education of China (No.20070216004).

Accesses

Citations

Detail

Sections
Recommended

/