Fabrication of single-crystalline ZnSe multipod-based structures

Peng-fei Yang, Wen-jie Chen, Hua Zou, Xiao-yi Lv

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (1) : 49-52.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (1) : 49-52. DOI: 10.1007/s11801-011-0112-1
Article

Fabrication of single-crystalline ZnSe multipod-based structures

Author information +
History +

Abstract

ZnSe multipod-based structures, including tetrapod-like microrods, long microwires, and short nanorods, are selectively prepared by atmospheric pressure thermal evaporation of ZnSe nanoparticles without using any catalyst. The morphologies could be well controlled by simply adjusting the deposition position. The phase structures, morphologies, and optical properties of the products are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. A vapor-liquid mechanism is proposed for the formation of ZnSe multipod-based structures. The presented route is expected to be applied to the synthesis of other II-VI groups or other group’s semiconductor materials with controllable morphologies.

Keywords

ZnSe / Room Temperature Photoluminescence / Deposition Position / ZnSe Nanoparticles / Room Temperature Photoluminescence Spectrum

Cite this article

Download citation ▾
Peng-fei Yang, Wen-jie Chen, Hua Zou, Xiao-yi Lv. Fabrication of single-crystalline ZnSe multipod-based structures. Optoelectronics Letters, 2011, 7(1): 49‒52 https://doi.org/10.1007/s11801-011-0112-1

References

[1]
LiL. S., AlivisatosA. P.. Adv. Mater., 2003, 15: 408
CrossRef Google scholar
[2]
ZhaoL., AnJ.-m., ZhangJ.-s., SongS.-j., WuY.-d., HuX.-w.. Journal of Optoelectronics · Laser, 2010, 21: 1589
[3]
ZhangJ.-s., AnJ.-m., ZhaoL., SongS.-j., WuY.-d., HuX.-w.. Journal of Optoelectronics · Laser, 2010, 21: 1431
[4]
RujkorakarnR., NelsonA. J.. J. Appl. Phys., 2000, 87: 8557
CrossRef Google scholar
[5]
PässlerR.. J. Appl. Phys., 1999, 86: 4403
CrossRef Google scholar
[6]
SlobodskyyA., GouldC., SlobodskyyT., BeckerC. R., SchmidtG., MolenkampL. W.. Phys. Rev. Lett., 2003, 90: 246601
CrossRef Google scholar
[7]
HolzmanJ. F., VermeulenF. E., IrvineS. E., ElezzabiA. Y.. Appl. Phys. Lett., 2002, 81: 2294
CrossRef Google scholar
[8]
YehC. Y., LuZ. W., FroyenS., ZungerA.. Phys. Rev. B, 1992, 46: 10086
CrossRef Google scholar
[9]
XiongS. L., ShenJ. M., XieQ., GaoY. Q., TangQ., QianY. T.. Adv. Funct. Mater., 2005, 15: 1787
CrossRef Google scholar
[10]
JoysuryaB., DivakarR., JuliaN., StephanH., AlanC., FranciosiA., BarryC.. Carter, J. Appl. Phys., 2008, 104: 064302
CrossRef Google scholar
[11]
WagnerR. S., EllisW. C.. Appl. Phys. Lett., 1964, 4: 89
CrossRef Google scholar
[12]
DuanX. F., LieberC. M.. J. Am. Chem. Soc., 2000, 122: 188
CrossRef Google scholar
[13]
FujitaS., MimotoH., NaguchiT.. J. Appl. Phys., 1979, 50: 1079
CrossRef Google scholar
[14]
KludeM., HommelD.. Appl. Phys. Lett., 2001, 79: 2523
CrossRef Google scholar
[15]
MazherJ., BadweS., SengarR., GuptaD., PandeyR. K.. Physica E, 2003, 16: 209
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/