Fabrication of single-crystalline ZnSe multipod-based structures

Peng-fei Yang , Wen-jie Chen , Hua Zou , Xiao-yi Lv

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (1) : 49 -52.

PDF
Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (1) : 49 -52. DOI: 10.1007/s11801-011-0112-1
Article

Fabrication of single-crystalline ZnSe multipod-based structures

Author information +
History +
PDF

Abstract

ZnSe multipod-based structures, including tetrapod-like microrods, long microwires, and short nanorods, are selectively prepared by atmospheric pressure thermal evaporation of ZnSe nanoparticles without using any catalyst. The morphologies could be well controlled by simply adjusting the deposition position. The phase structures, morphologies, and optical properties of the products are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. A vapor-liquid mechanism is proposed for the formation of ZnSe multipod-based structures. The presented route is expected to be applied to the synthesis of other II-VI groups or other group’s semiconductor materials with controllable morphologies.

Keywords

ZnSe / Room Temperature Photoluminescence / Deposition Position / ZnSe Nanoparticles / Room Temperature Photoluminescence Spectrum

Cite this article

Download citation ▾
Peng-fei Yang, Wen-jie Chen, Hua Zou, Xiao-yi Lv. Fabrication of single-crystalline ZnSe multipod-based structures. Optoelectronics Letters, 2011, 7(1): 49-52 DOI:10.1007/s11801-011-0112-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiL. S., AlivisatosA. P.. Adv. Mater., 2003, 15: 408

[2]

ZhaoL., AnJ.-m., ZhangJ.-s., SongS.-j., WuY.-d., HuX.-w.. Journal of Optoelectronics · Laser, 2010, 21: 1589

[3]

ZhangJ.-s., AnJ.-m., ZhaoL., SongS.-j., WuY.-d., HuX.-w.. Journal of Optoelectronics · Laser, 2010, 21: 1431

[4]

RujkorakarnR., NelsonA. J.. J. Appl. Phys., 2000, 87: 8557

[5]

PässlerR.. J. Appl. Phys., 1999, 86: 4403

[6]

SlobodskyyA., GouldC., SlobodskyyT., BeckerC. R., SchmidtG., MolenkampL. W.. Phys. Rev. Lett., 2003, 90: 246601

[7]

HolzmanJ. F., VermeulenF. E., IrvineS. E., ElezzabiA. Y.. Appl. Phys. Lett., 2002, 81: 2294

[8]

YehC. Y., LuZ. W., FroyenS., ZungerA.. Phys. Rev. B, 1992, 46: 10086

[9]

XiongS. L., ShenJ. M., XieQ., GaoY. Q., TangQ., QianY. T.. Adv. Funct. Mater., 2005, 15: 1787

[10]

JoysuryaB., DivakarR., JuliaN., StephanH., AlanC., FranciosiA., BarryC.. Carter, J. Appl. Phys., 2008, 104: 064302

[11]

WagnerR. S., EllisW. C.. Appl. Phys. Lett., 1964, 4: 89

[12]

DuanX. F., LieberC. M.. J. Am. Chem. Soc., 2000, 122: 188

[13]

FujitaS., MimotoH., NaguchiT.. J. Appl. Phys., 1979, 50: 1079

[14]

KludeM., HommelD.. Appl. Phys. Lett., 2001, 79: 2523

[15]

MazherJ., BadweS., SengarR., GuptaD., PandeyR. K.. Physica E, 2003, 16: 209

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/