Theoretical shape analysis of tapered fibers using a movable large-zone furnace

Wei-min Sun, Ming Yuan, Xian-jin Zeng, T. A. Birks

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) : 0.

Optoelectronics Letters ›› 2011, Vol. 7 ›› Issue (2) : 0. DOI: 10.1007/s11801-011-0100-5
Article

Theoretical shape analysis of tapered fibers using a movable large-zone furnace

Author information +
History +

Abstract

To estimate the shape of tapered fibers using tapering machines with movable large-zone furnaces, a new calculation method is proposed based on the discrete deducing method and the principle of the volume conservation of the fiber materials. This method can estimate the tapering results, i.e., the shape of the tapered fibers, based on arbitrary moving parameters of the large-zone furnace and the fiber holders. The theoretical estimated results agree with the experimental measuring shape of the tapered fibers quite well.

Keywords

Optical Fiber / Fiber Material / Photonic Crystal Fiber / Timothy / Volume Conservation

Cite this article

Download citation ▾
Wei-min Sun, Ming Yuan, Xian-jin Zeng, T. A. Birks. Theoretical shape analysis of tapered fibers using a movable large-zone furnace. Optoelectronics Letters, 2011, 7(2): 0 https://doi.org/10.1007/s11801-011-0100-5

References

[1]
BirksT. A., LiY. W.. Journal of Lightwave Technology, 1992, 10: 432
CrossRef Google scholar
[2]
DimmickT. E., KakarantzasG., BirksT. A.. Applied Optics, 1999, 38: 6845
CrossRef Google scholar
[3]
Timothy E. Dimmick, George Kakarantzas and Timothy A. Birks, Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America), FB4 (2000).
[4]
G. Kakarantzas, S. G. Leon-saval, T. A. Birks and P. St. J. Russell, Conference on Lasers and Electro-Optics, CWM6 (2004).
[5]
N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks and F. Benabid, Conference on Lasers and Electro-Optics, CTuS5 (2010).
[6]
M. D. Rollings, M. D. W. Grogan, L. M. Xiao, R. England, T. A. Birks and W. J. Wadsworth, Conference on Lasers and Electro-Optics, JTuD59 (2010).
[7]
SunW., LiuX., FuF., ZhangJ.. Chinese Optics Letters, 2008, 6: 715
CrossRef Google scholar
[8]
ElsenmannM., WeidelE.. Journal of Lightwave Technology, 1988, 6: 113
CrossRef Google scholar
[9]
YangS., WuT., WuC. W.. Journal of Lightwave Technology, 1998, 16: 691
CrossRef Google scholar
[10]
WuT.. Journal of Lightwave Technology, 2000, 18: 1024
CrossRef Google scholar
[11]
BurnsW.K., AbebeM., VillarruelC.A.. Applied Optics, 1985, 24: 2753
CrossRef Google scholar
[12]
BurnsW.K., AbebeM.. Applied Optics, 1987, 26: 4190
CrossRef Google scholar
[13]
RodrigusJ.M.P., MacleanT.S.M., GazeyB.K.. Applied Optics, 1987, 26: 1578
CrossRef Google scholar
[14]
ChenZ., WANGT., YANF., XIAY.. Journal of Optoelectronics · Laser, 2005, 16: 1291
[15]
ChenZ.. Journal of Shanghai University (Natural Science), 2007, 13: 383

This work has been supported by the National Natural Science Foundation of China (No.11078009), and the Natural Science Foundation of Heilongjiang Province (No.A200914).

Accesses

Citations

Detail

Sections
Recommended

/