Rhenium oxide as the interfacial buffer layer for polymer photovoltaic cells

Hao Xu , Li-ying Yang , Hui Tian , Shou-gen Yin , Fengling Zhang

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 176 -178.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 176 -178. DOI: 10.1007/s11801-010-9290-5
Article

Rhenium oxide as the interfacial buffer layer for polymer photovoltaic cells

Author information +
History +
PDF

Abstract

The effect of a new interfacial buffer layer material, rhenium oxide (ReO3), on the performance of polymer solar cells based on regioregular poly (3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend is investigated. The effect of the thickness of the oxide layer on electrical characteristics of the device is also studied. Compared with traditional devices, by inserting a 10 nm-thick ReO3 as the anode buffer layer, a power conversion efficiency (PCE) of 2.8 % (a 37% improvement compared with the control devices) can be obtained with Jsc of 13.6 mA/cm2, Voc of 0.45 V, and a fill factor (FF) of 53.6% under the simulated AM1.5 G 100 mW/cm2 illumination in air. It is indicated that ReO3 can be used as an effective buffer layer to enhance the polymer bulk heterojunction (BHJ) photovoltaic cell efficiency.

Keywords

Buffer Layer / Fill Factor / Power Conversion Efficiency / Polymer Solar Cell / Rhenium Oxide

Cite this article

Download citation ▾
Hao Xu, Li-ying Yang, Hui Tian, Shou-gen Yin, Fengling Zhang. Rhenium oxide as the interfacial buffer layer for polymer photovoltaic cells. Optoelectronics Letters, 2010, 6(3): 176-178 DOI:10.1007/s11801-010-9290-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiG., ChuC. W., ShrotriyaV., HuangJ., YangY.. Appl. Phys. Lett., 2006, 88: 253503

[2]

KimJ. Y., KimS. H., LeeH. H., LeeK., MaW., andX. G., HeegerA. J.. Adv. Mater., 2006, 18: 572

[3]

LinH., YuJ. S., HuangJ., JiangY. D.. Optoelectronics Letters, 2008, 4: 321

[4]

SchulzeK., MaennigB., LeoK., TomitaY., MayC., HüpkesJ., BrierE., ReinoldE., BäuerleP.. Appl. Phys. Lett., 2007, 91: 073521

[5]

ZhangX. F., XuZ., ZhaoS. L., ZhangF. J., LiY., WuC. Y., ChenY. N.. Optoelectronics Letters, 2008, 4: 257

[6]

HongZ. R., LiangC. J., SunX. Y., ZengX. T.. J. Appl. Phys., 2006, 100: 093711

[7]

ZhangF. L., GadisaA., InganäsO., SvenssonM., AnderssonM. R.. Appl. Phys. Lett., 2004, 84: 3906

[8]

KoC., LinY., ChenF., ChuC.. Appl. Phys. Lett., 2007, 90: 063509

[9]

ShrotriyaV., LiG., YaoY., ChuC.-W., YangY.. Appl. Phys. Lett., 2006, 88: 073508

[10]

ZhangF., CederM., InganäsO.. Adv. Mater., 2007, 19: 1835

[11]

KhodabakhshS., SandersonB. M., NelsonJ., JonesT. S.. Adv. Funct. Mater., 2006, 16: 95

[12]

YanH., LeeP., ArmstrongN. R., GrahamA., EvmenenkoG. A., DuttaP., MarksT. J.. J. Am. Chem. Soc., 2005, 127: 3172

[13]

KemerinkM., TimpanaroS., de KokM. M., MeulenkampE. A., TouwslagerF. J.. J. Phys. Chem. B, 2004, 108: 18820

[14]

KawanoK., PaciosR., PoplavskyyD., NelsonJ., BradleyD. D. C., DurrantJ. R.. Sol. Energy Mater. Sol. Cells., 2006, 90: 3520

[15]

TaoC., RuanS. P., ZhangX. D., XieG. H., ShenL., KongX. Z., DongW., LiuC. X., ChenW. Y.. Appl. Phys. Lett., 2008, 93: 193307

[16]

LiaoL. S., SlusarekW. K., HatwarT. K., RicksM. L., ComfortD. L.. Adv. Mater., 2008, 20: 324

[17]

ChenF. C., WuJ. L., YangS. S., HsiehK. H., ChenW. C.. J. Appl. Phys., 2008, 103: 103721

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/