Simulation investigation on supercontinuum generation and noise characteristics in the normal dispersion photonic crystal fiber with a flattened dispersion profile

Heng-rui Li , Xin-zhu Sang , Jin-hui Yuan , Kui-ru Wang , Chong-xiu Yu

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 172 -175.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 172 -175. DOI: 10.1007/s11801-010-9285-2
Article

Simulation investigation on supercontinuum generation and noise characteristics in the normal dispersion photonic crystal fiber with a flattened dispersion profile

Author information +
History +
PDF

Abstract

The propagation of picosecond pulses in the normal dispersion photonic crystal fiber (PCF) with a flattened dispersion profile is numerically investigated. The characteristics of the amplitude and phase noise in the supercontinuum generation (SCG) are also analyzed through the coherent sliced supercontinuum (SC). The effects of self-phase modulation (SPM) and four-wave mixing (FWM) on broadening of the pulse spectrum are presented, and the best amplitude and phase noise performance with a specific fiber length is obtained. The SCG in the wavelength range of 1475 to 1625 nm has only fluctuation between ±1.5 dB, and both the amplitude and phase noise caused by the intensity noise of the input power is below 2.5% in the range of 1500 to 1600 nm.

Keywords

Fiber Length / Phase Noise / Stimulate Raman Scattering / Photonic Crystal Fiber / Noise Characteristic

Cite this article

Download citation ▾
Heng-rui Li, Xin-zhu Sang, Jin-hui Yuan, Kui-ru Wang, Chong-xiu Yu. Simulation investigation on supercontinuum generation and noise characteristics in the normal dispersion photonic crystal fiber with a flattened dispersion profile. Optoelectronics Letters, 2010, 6(3): 172-175 DOI:10.1007/s11801-010-9285-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. V. Mamyshev, Proc. Eur. Conf. Optical Communication, 475 (1998).

[2]

SangX., ChuP. L., YuC.. Opt. Quantum Electron., 2005, 37: 965

[3]

TakaraH., KawanishiS., MoriokaT., MoriK., SaruwatariM.. Electron. Lett., 1994, 30: 1152

[4]

ChenY.-z., LiY.-z., XuW.-C.. Chinese J. Lasers, 2004, 31: 1239

[5]

XiaG., HuangD.-X., YuanX.-H.. Acta Physica Sinica, 2007, 56: 2213

[6]

JiaoZ., ZhangX.. IEEE Photon Technol. Lett., 2009, 21: 420

[7]

LauraA., SoniaM.-L., AnaC.-S., FelixR.-B., PedroC., MariaL. H., MiguelG.-H.. J. Lightwave Technol., 2009, 27: 426

[8]

CheY.-l., SuiZ., LuoK.-b., LiM.-z., WangJ.-j., YangY.-s., LiX.-f., HuangX.-d., XuD.-p.. High Power Laser and Particle Beams, 2008, 20: 193

[9]

ZhangH., ChangS.-j., ZhangY.-x., ZhaoX.-t.. Optoelectronics Letters, 2008, 4: 103

[10]

XuY.-z., RenX.-m., WangZ.-n., ZhangX., HuangY.-q.. Journal of Optoelectronics · Laser, 2007, 18: 889

[11]

HouS.-l., HanJ.-w., ZhangR.-r., HuangY.-q., ZhangX., RenX.-m.. Journal of Optoelectronics · Laser, 2010, 21: 5

[12]

Nuh S.Yuksek, Xinzhu Sang, En-Kuang Tien, Feng Qian, Qi Song and Ozdal Boyraz, Conference on Lasers and Electro-Optics /Quantum Electronics and Laser Science, 2008.

[13]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed., Academic Press, 1995.

[14]

TaccheoS., EnnserK.. IEEE Photon Technol. Lett., 2002, 14: 1100

[15]

S. Taccheo and L. Boivin, Optical Fiber Communication Conference, 2000.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/