Transient simulation and optimization of InP/InGaAs unitraveling carrier photodetector

Li-sa Liu , Sheng Xie , Lu-hong Mao , Shi-lin Zhang , Hai-tao Qi

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 191 -194.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 191 -194. DOI: 10.1007/s11801-010-9280-7
Article

Transient simulation and optimization of InP/InGaAs unitraveling carrier photodetector

Author information +
History +
PDF

Abstract

The transient photoresponse of a backside-illuminated InP/InGaAs uni-traveling carrier photodetector (UTC-PD) is simulated by a 2D drift-diffusion approach utilizing a commercial numerical device simulator (ATLAS). The effects of the epitaxial layer structure and device biasing are taken into account. The simulation results indicate that the absorption region has a critical effect on the photoresponse pulse, and an optimized epitaxial layer structure is given to achieve a fast response while maintaining a reasonable response. Here, the optimized material parameters of the absorption region are 180 nm and 5×1016cm−3, respectively.

Keywords

Doping Concentration / Absorption Region / Response Pulse / Absorption Layer / Collection Region

Cite this article

Download citation ▾
Li-sa Liu, Sheng Xie, Lu-hong Mao, Shi-lin Zhang, Hai-tao Qi. Transient simulation and optimization of InP/InGaAs unitraveling carrier photodetector. Optoelectronics Letters, 2010, 6(3): 191-194 DOI:10.1007/s11801-010-9280-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XinH. M., HuangY. Q., ChenH. B., HuangH., RenX. M., ZhouX. G.. Optoelectron. Lett., 2009, 5: 6

[2]

XuY. F., HuangY. Q., HuangH., NiH. Q., NiuZ. C., RenX. M.. J. Optoelectronics Laser, 2009, 20: 12

[3]

IshibashiT., FurutaT., FushimiH., KodamaS., ItoH., NagatsumaT., ShimizuN., MiyamotoY.. The Institute of Electronics, Information and Communication Engineers (IEICE) Trans. Electron., 2000, E83-C: 938

[4]

ShimizuN., MurataK., HiranoA., MiyamotoY., KitabayashiH., UmedaY., AkeyoshiT., FurataT., WatanabeN.. Electron. Lett., 2000, 36: 1220

[5]

ItoH., KodamaS., MuramotoY., FurataT., NagatsumaT., IshibashiT.. IEEE J. Sel. Top. in Quantum Electron., 2004, 10: 709

[6]

JunD. H., JangJ. H., AdesidaI., SongJ. I.. Jpn. J. Appl. Phys., 2006, 45: 3475

[7]

ChtiouiM., EnardA., CarpentierD., BernardS., RousseauB., LelargeF., PommereauF., AchoucheM.. IEEE Photon. Technol. Lett., 2008, 20: 202

[8]

IshibashiT., FurataT., FushimiH., ItoH.. Proc. of SPIE, 2001, 4283: 469

[9]

FurutaT., ItoH., IshibashiT.. Proc. Inst. Phys. Conf. Ser., 2000, 166: 419

[10]

XieS., LiuL. S., KangW. P., SongR. L., MaoL. H., ZhangS. L.. Chinese Sci. Bull., 2009, 54: 3691

[11]

ShimizuN., WatanabeN., FurutaT., IshibashiT.. IEEE Photon. Technol. Lett., 1998, 10: 412

[12]

ATLAS Users Manual, Silvaco International, Santa Clara, 1997.

[13]

SrivastavaS., RoenkerK. P.. Solid State Electron., 2004, 48: 461

[14]

ZhuH. B., MaoL. H., YangZ., GuoW. L., ZhangS. L., LiangH. L.. Chinese J. Semicond., 2006, 27: 2019

[15]

ShimuzuN., WatanabeN., FurataT., IshibashiT.. Appl. Phys. Lett., 2000, 76: 1191

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/