Effect of precursor molar ratio of [S2−]/[Zn2+] on the lifetime of ZnS nanocrystals

Qing-song Huang, Lan Li, Jian-ping Xu, Xiao-song Zhang, Gao-feng Zhang, Rong-wei Xuan

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 161-163.

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 161-163. DOI: 10.1007/s11801-010-9278-1
Article

Effect of precursor molar ratio of [S2−]/[Zn2+] on the lifetime of ZnS nanocrystals

Author information +
History +

Abstract

Undoped ZnS nanocrystals (NCs) with different precursor molar ratios of [S2−]/[Zn2+] are prepared by the chemical precipitation method. The structural and optical properties of the samples are characterized by the X-ray diffraction (XRD) spectra, photoluminescence (PL) spectra and PL decay spectra. The XRD analysis shows that the crystal quality of ZnS NCs becomes better and the grain size is larger at higher [S2−]/[Zn2+] ratios. The PL peaked at 430 nm decreases with the [S2−]/[Zn2+] ratio increasing, which is ascribed to the structure defects of NCs. A multi-exponential decay time curve with hundreds of picoseconds, several nanoseconds and tens of nanoseconds is obtained, which also shows a distinct and regular change with [S2−]/[Zn2+] ratio. It is indicated that the PL and emission decay properties of ZnS NCs mainly depend on the change of the defects number from different particle sizes.

Keywords

Blue Emission / Chemical Precipitation Method / Defect Number / Sodium Polyphosphates / Deionized Water Solution

Cite this article

Download citation ▾
Qing-song Huang, Lan Li, Jian-ping Xu, Xiao-song Zhang, Gao-feng Zhang, Rong-wei Xuan. Effect of precursor molar ratio of [S2−]/[Zn2+] on the lifetime of ZnS nanocrystals. Optoelectronics Letters, 2010, 6(3): 161‒163 https://doi.org/10.1007/s11801-010-9278-1

References

[1]
ChenL., LiaoM. X., XiongJ. W.. Journal of Optoelectronics Laser, 2008, 19: 278
CrossRef Google scholar
[2]
TianW., WuF., ChenW. J., ZhangG. L.. Journal of Optoelectronics Laser, 2009, 20: 342
[3]
ZhengJ. J., ZhangG. L., ZhangX. S.. Journal of Optoelectronics Laser, 2007, 18: 443
[4]
RenZ. Y., YangH., ShenL. C., HanS. D.. J. Mater. Sci.-Mater. Electron., 2008, 19: 1
CrossRef Google scholar
[5]
SuyverJ. F., WuisterS. F., KellyJ. J., MeijerinkA.. Nano Lett., 2001, 1: 429
CrossRef Google scholar
[6]
FangY. C., ChuS. Y., ChenH. C., KaoP. C., ChenI. G., HwangC. S.. J. Electrochem. Soc., 2009, 156: K55
CrossRef Google scholar
[7]
CaoL. X., ZhangJ. H., RenS. L.. Appl. Phys. Lett., 2002, 80: 4300
CrossRef Google scholar
[8]
BiswasS., KarS., ChaudhuriS., NambissanP. M. G.. J. Phys.-Condes. Matter, 2008, 20: 10
CrossRef Google scholar
[9]
BrunnerS., PuffW., BaloghA. G., MascherP.. Physica B, 1999, 273–274: 898
CrossRef Google scholar
[10]
AdamsM., MascherP., KitaiA. H.. Appl. Phys. a-Mater. Sci. Proc., 1995, 61: 217
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos. 60877029, 60977035, 60907021 and 10904109), the Natural Science Foundation of Tianjin (Nos. 07JCYBJC06400 and 09JCYBJC01400), and the Subject of Science and Technology Development Fund at University of Tianjin (No.20071207).

Accesses

Citations

Detail

Sections
Recommended

/