Influence of charge carrier injection at emitter electrode/emitter interface on the performance of metal-base organic transistors

Kai Zhao, Jia-chun Deng, Xiao-man Cheng, Xiao-ming Wu, Li-ying Yang, Yu-lin Hua, Jun Wei, Shou-gen Yin

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 195-198.

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 195-198. DOI: 10.1007/s11801-010-9271-8
Article

Influence of charge carrier injection at emitter electrode/emitter interface on the performance of metal-base organic transistors

Author information +
History +

Abstract

Pentacene-based metal-base organic transistors (MBOTs) are fabricated. The influence of the charge carrier injection efficiency at the emitter electrode/emitter interface on the device performance is investigated. It is found that the current modulation and the on/off ratio increase with the injection efficiency. By inserting poly(3,4-ethylenedioxythiophene) (PEDOT): PSS/m-MTDATA layers at the emitter electrode/emitter interface, the current modulation and the on/off ratio reach 6.7 mAcm−2 and 23, respectively. Meanwhile, the current gain is 95–96 in our experiment, which is almost independent on the injection efficiency.

Keywords

Current Modulation / Pentacene / Current Gain / Injection Efficiency / Organic Thin Film Transistor

Cite this article

Download citation ▾
Kai Zhao, Jia-chun Deng, Xiao-man Cheng, Xiao-ming Wu, Li-ying Yang, Yu-lin Hua, Jun Wei, Shou-gen Yin. Influence of charge carrier injection at emitter electrode/emitter interface on the performance of metal-base organic transistors. Optoelectronics Letters, 2010, 6(3): 195‒198 https://doi.org/10.1007/s11801-010-9271-8

References

[1]
SirringhausH., TesslerN., FriendR. H.. Science, 1998, 280: 1741
CrossRef Google scholar
[2]
CroneB., DodabalapurA., LinY. Y., FilasR. W., BaoZ., LaducaA., SarpeshkarR., KatzH. E., LiW.. Nature, 2000, 403: 521
CrossRef Google scholar
[3]
LiuX., BaiY., ChenL., ZhuW.-q., JiangX.-y., ZhangZ.-l.. Journal of Optoelectronics Laser, 2008, 19: 577
[4]
DongM.-j., TaoC.-l., ZhangX.-h., OuG., ZhangF.-j.. Journal of Optoelectronics Laser, 2008, 19: 161
[5]
EderF., KlaukH., HalikM., ZschieschangU., SchmidG., DehmC.. Appl. Phys. Lett., 2004, 84: 2673
CrossRef Google scholar
[6]
ZorbaS., GaoY.. Appl. Phys. Lett., 2005, 86: 193508
CrossRef Google scholar
[7]
FujimotoS.-y., NakayamaK.-i., YokoyamaM.. Appl. Phys. Lett., 2005, 87: 133503
CrossRef Google scholar
[8]
ChaoY.-C., YangS.-L., MengH.-F., HorngS.-F.. Appl. Phys. Lett., 2005, 87: 253508
CrossRef Google scholar
[9]
NakayamaK.-i., FujimotoS.-y., YokoyamaM.. Appl. Phys. Lett., 2006, 88: 153512
CrossRef Google scholar
[10]
ChaoY.-C., MengH.-F., HorngS.-F.. Appl. Phys. Lett., 2006, 88: 223510
CrossRef Google scholar
[11]
YangC.-Y., OuT.-M., ChengS.-S., WuM.-C., LinS.-Y., ChanI.-M., ChanY.-J.. Appl. Phys. Lett., 2006, 89: 183511
CrossRef Google scholar
[12]
ChengS.-S., YangC.-Y., ChuangY.-C., OuC.-W., WuM.-C., LinS.-Y., ChanY.-J.. Appl. Phys. Lett., 2007, 90: 153509
CrossRef Google scholar
[13]
YiM., YuS., FengC., ZhangT., MaD., MeruviaM. S., HümmelgenI. A.. Organic Electronics., 2007, 8: 311
CrossRef Google scholar
[14]
HuangJ., YiM., MaD., HümmelgenI. A.. Appl. Phys. Lett., 2008, 92: 232111
CrossRef Google scholar
[15]
ChaoY.-C., XieM.-H., DaiM.-Z., MengH.-F., HorngS.-F., HsuC.-S.. Appl. Phys. Lett., 2008, 92: 093310
CrossRef Google scholar
[16]
SerbenaJ. P. M., HuangJ. Y., MabD., WangZ. Y., HümmelgenI. A.. Organic Electronics., 2009, 10: 357
CrossRef Google scholar
[17]
NakayamaK.-i., FujimotoS.-y., YokoyamaM.. Organic Electronics., 2009, 10: 543
CrossRef Google scholar
[18]
MeruviaM. S., HümmelgenI. A.. Adv. Funct. Mater., 2006, 16: 459
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.60676051), Tianjin Natural Science Foundation (Nos. 07JCYBJC12700 and 06TXTJJC14603), Key Project of Chinese Ministry of Education (No.209007), and Tianjin Key Discipline of Material Physics and Chemistry.

Accesses

Citations

Detail

Sections
Recommended

/