High-yield synthesis of silicon nanoparticles via the perpendicular pulsed laser ablation in the inert gas

Hai-jun Niu , Li Zhang , Jia-ying Zhu , Mi-lin Zhang , Xu-duo Bai

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (2) : 81 -84.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (2) : 81 -84. DOI: 10.1007/s11801-010-9238-9
Article

High-yield synthesis of silicon nanoparticles via the perpendicular pulsed laser ablation in the inert gas

Author information +
History +
PDF

Abstract

Si nanoparticles are synthesized at a high rate (400–500 mg/h) using the perpendicular pulsed laser ablation (PPLA) on the silicon target at room temperature in Ar atmosphere. The PPLA method can also be used to obtain Si nanocrystal films with large areas on the glass substrate. These particles are etched with a mixture of hydrofluoric acid (HF) and nitric acid (HNO3) to reduce their sizes and the surfaces of these particles are passivated by the high-pressure water vapor annealing (HWA). After treating the particles exhibit blue emission (with maximum photoluminescence (PL) intensity at 404 nm) at room temperature.

Keywords

Glass Substrate / Silicon Nanoparticles / Silicon Target / Scanning Motion / Maximum Photoluminescence

Cite this article

Download citation ▾
Hai-jun Niu, Li Zhang, Jia-ying Zhu, Mi-lin Zhang, Xu-duo Bai. High-yield synthesis of silicon nanoparticles via the perpendicular pulsed laser ablation in the inert gas. Optoelectronics Letters, 2010, 6(2): 81-84 DOI:10.1007/s11801-010-9238-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DubertretB., SkouridesP., NorrisD. J., NoireauxV., BrivanlouA. H., LibchaberA.. Science, 2002, 298: 1759

[2]

CoeS., WooW. K., BawendiM., BulovicV.. Nature, 2002, 420: 800

[3]

BelomoinG., TherrienJ., SmithA., BelomoinG., TherrienJ., SmithA., RaoS., TwestenR., ChaiebS., NayfehM. H., WagnerL., MitasL.. Appl. Phys. Lett., 2002, 80: 841

[4]

HolmesJ. D., ZieglerK. J., DotyR. C., PellL. E., JohnstonK. P., KorgelB. A.. J. Am. Chem. Soc., 2001, 123: 3743

[5]

NeinerD., ChiuH. W., KauzlarichS. M.. J. Am. Chem. Soc., 2006, 128: 11016

[6]

NakajimaA., SugitaY., KawamuraK., TomitaH., YokoyamaN.. Jpn. J. Appl. Phys. B, 1996, 35: L189

[7]

PiX. D., ZalloumO. H. Y., RoschukT., WojcikJ., KnightsA. P., MascherP.. Appl. Phys. Lett., 2006, 88: 103111

[8]

GellozB., KojimaA., KoshidaN.. Appl. Phys. Lett., 2005, 87: 031107

[9]

NiuH., FanL., LiC., WangH., WangY., Baix., Wend.. Journal of Optoelectronics · Laser, 2007, 18: 303

[10]

QinC.-l., ZhaoS.-f., LiC.-m.. Journal of Optoelectronics · Laser, 2008, 19: 178

[11]

GeoheganD. B., PuretzkyA. A., DuscherG., PennycookS. J.. Appl. Phys. Lett., 1998, 72: 2987

[12]

ChenX. Y., LuY. F., WuY. H., ChoB. J., LiuM. H., DaiD. Y., SongW. D.. J. Appl. Phys., 2004, 96: 3180

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/