Synthesis and optical properties of Ni-doped zinc oxide nanoparticles for optoelectronic applications

R. Elilarassi , G. Chandrasekaran

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (1) : 6 -10.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (1) : 6 -10. DOI: 10.1007/s11801-010-9236-y
Optoelectronics Letters

Synthesis and optical properties of Ni-doped zinc oxide nanoparticles for optoelectronic applications

Author information +
History +
PDF

Abstract

Nanocrystalline undoped and nickel doped zinc oxide (Zn1−xNixO, x = 0.00, 0.01) powders are successfully synthesized by a simple and low-temperature “auto-combustion method”. The microstructural and optical absorption and emission properties of the as-prepared samples are obtained using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red spectrometer (FTIR), UV-visible and photoluminescence (PL). The structure study confirms the formation of the hexagonal wurtzite ZnO without any secondary phase in the Ni-doped sample. The optical absorption measurements indicate the red shift in the absorption band edge upon nickel doping. The band gap energy decreases from 3.21 eV to 3.17 eV. The photoluminescence spectra of the as-prepared samples under a room temperature show strong ultraviolet (UV) and blue emission peaks. The PL emission research strongly reveals that Ni doping can effectively adjust the energy level which leads to a red shift at the emission peak in UV region.

Keywords

Blue Emission Peak / Nickel Nitrate Hexahydrate / Nickel Doping / Phase Hexagonal Wurtzite Structure / Single Phase Hexagonal Wurtzite Structure

Cite this article

Download citation ▾
R. Elilarassi, G. Chandrasekaran. Synthesis and optical properties of Ni-doped zinc oxide nanoparticles for optoelectronic applications. Optoelectronics Letters, 2010, 6(1): 6-10 DOI:10.1007/s11801-010-9236-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GolegoN., StudenikinS.A., CociveraM.. J. Electrochem. Soc., 2000, 147: 1592

[2]

LinY., ZhangZ., TangZ., YuanF., LiJ.. Adv. Mater. Opt. Electron, 1999, 9: 206

[3]

WangX., SongJ., LiuJ., WangZ.L.. Science, 2007, 316: 102

[4]

KerenK., BermanR.S., BuchstabE., SivanU., BraunE.. Science, 2003, 302: 1380

[5]

WongE.W., SearsonP. C.. Appl. Phys. Lett., 1999, 74: 2939

[6]

ChoopumS., VisputeR. D., NochW., BalsamoA., SharmaR. P., VenkatesanT.. Appl. Phys. Lett., 1999, 75: 3947

[7]

LawM., GreeneL., JohnsonJ.C., SaykallyR., YangP.. Nat. Mater., 2005, 4: 455

[8]

GrabowskaJ., NandaK., McglynnE.. Journal of Materials Science, 2005, 16: 397

[9]

HuG., GongH.. Applied Physics Letters, 2006, 89: 251102

[10]

DayanN.J., SainkarS.R., KarekarR.N., AiyerR.C.. Thin Solid Films, 1998, 325: 254

[11]

ChenC.S., KuoC.T., WuT.B., LinI.N.. Japan. J. Appl. Phys., 1997, 1: 1169

[12]

SimaM., EnculescuI., SimaM., EnacheM., VasileE., AnsermetJ. P.. Phys. Status Solidi B, 2007, 244: 1522

[13]

Djuriši’A. B., ChoyW. C. H., RoyV. A. L., LeungY. H., KwongC. Y., CheahK. W., Gundu RaoT. K., ChanW. K., LuiH. F., SuryaC.. Adv. Funct. Mater., 2004, 14: 856

[14]

MaensiriS., LaokulP., PhokhaS.. J. Magn. Magn. Mater., 2006, 305: 381

[15]

DuttaS., ChattopadhyayS., SutradharM., SarkarA., ChakrabartiM., SanyalD., JanaD.. J. Phys. Condens. Matter., 2007, 19: 236218

[16]

MaensiriS., SreesongmuangJ., ThomasC., KlinkaewnarongJ.. J. Magn. Magn.Mater., 2006, 301: 422

[17]

KimK.J., ParkY. R.. Appl. Phys. Lett., 2002, 81: 1420

[18]

RadovanovicP. V., GamilinD. R.. Phys. Rev. Lett., 2003, 91: 157202

[19]

KimK. K., KoguchiN., OkY. W., SeongT. Y., ParkS. J.. Appl. Phys. Lett., 2004, 84: 3810

[20]

BeniG., RiceT. M.. Phys. Rev. B, 1978, 18: 768

[21]

SamantaK., BhattacharyaP., KatiyarR.S.. Appl. Phys. Lett., 2005, 87: 101903

[22]

WangH., WangH. B., YangF. J., ChenY., ZhangC., YangC. P., LiQ., WongS.P.. Nanotechnology, 2006, 17: 4312

[23]

ZouJ., ZhouS., ZhangX., SuF., LiX., XuJ.. J. Mater. Sci. Technol., 2005, 21: 549

[24]

LiuD.H., LiaoL., LiJ. C., GuoH. X., FuQ.. Materials Science and Engineering B, 2005, 121: 77

[25]

SakaiK., KakenoT., IkariT., ShirakataS., SakemiT., AwaiK., YamamotoT.. Journal of Applied Physics, 2006, 99: 043508

[26]

YuY. S., KimG.Y., MinB. H., KimS. C.. Journal of the European Ceramic Society, 2004, 24: 1865

[27]

LiuY., FangQ., WuM., LiY., LvQ., ZhouJ., WangB.. J. Phys. D, 2007, 40: 4592

[28]

WangB., ShanX. d., FuQ., JavedI., LvY., FuH. g., YuD.. Physica E, 2009, 41: 413

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/