A novel resonant cavity enhanced photodetector with flat-top and steep-edge response

Jing Di , Yong-qing Huang , Xiao-feng Duan , Hai-lan Song , Xiaomin Ren , Hui Huang , Qi Wang

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 265 -268.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 265 -268. DOI: 10.1007/s11801-010-9225-1
Article

A novel resonant cavity enhanced photodetector with flat-top and steep-edge response

Author information +
History +
PDF

Abstract

A novel resonant cavity enhanced (RCE) photodetector with flat-top and steep-edge response is presented. The response is obtained by designing a gradient-thickness P area in the absorption cavity. Simulation results show that the maximum and minimum values of the quantum efficiency in bandpass are 85.242% and 87.564% respectively, the ripple is about 3.6%, and 0.5 dB, 3 dB and 20 dB bandwidths are 0.3 nm, 0.4 nm and 1.2 nm, respectively. The mesa area is 10 μm × 10 μm and the frequency response bandwidth is 87 GHz. Compared with similar photodetectors, this photodetector has high quantum efficiency, narrow spectral response linewidth, good flat-top and steep-edge response and ideal high-speed characteristics.

Keywords

Inclination Angle / Quantum Efficiency / Wavelength Division Multiplex / Distribute Bragg Reflector / Wavelength Channel

Cite this article

Download citation ▾
Jing Di, Yong-qing Huang, Xiao-feng Duan, Hai-lan Song, Xiaomin Ren, Hui Huang, Qi Wang. A novel resonant cavity enhanced photodetector with flat-top and steep-edge response. Optoelectronics Letters, 2010, 6(4): 265-268 DOI:10.1007/s11801-010-9225-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RokaR.. IEEE SympoTIC, 2003, New York, IEEE Publisher: 160

[2]

KishinoK., UnluM.S., ChyiJ.-l.. IEEE J. Quantum Electron., 1991, 27: 2025

[3]

UnluM. S., StriteS.. J. Appl. Phys., 1995, 78: 607

[4]

KnodlT., ChoyK. H.. IEEE Photon. Technol. Lett., 1999, 11: 1289

[5]

RenX., CampbellJ. C.. IEEE J. Quantum Electron., 1996, 32: 1903

[6]

LiuK., HuangY., RenX.. Appl. Opt., 2000, 39: 423

[7]

RenX., CampbellJ. C.. Technical Proceedings. International Topic Meeting on Photoelectronics, 1997, Beijing, OSC: 81

[8]

Huang Hui, Zhang Ruikang and Wang Qi, Optical Fiber Communication Conference, ThGG73 (2002).

[9]

XuY., HuangY., HuangH.. Journal of Optoelectronics · Laser, 2009, 20: 13

[10]

ZhongY., PanZ., LiL.. Journal of Lasers, 2002, 29: 347

[11]

HuangC., HuangH., WangW.. Semiconductor Optical Electronics, 2005, 26: 100

[12]

HuangH., HuangY., RenX.. Electron. Lett., 2003, 39: 113

[13]

HuangH., WangX., RenX.. Journal of Semiconductors, 2005, 26: 1469

[14]

CaiX., ZuoY., WangQ.. Journal of Optoelectronics Laser, 2004, 15: 1144

[15]

ZuoY., CaiX., MaoR.. Journal of Semiconductors, 2005, 26: 2218

[16]

BornM., WolfE.. Principles of Optic, 1991, Oxford, Pergamon Press: 790

[17]

YanJ., WeiG., HaL.. Matrix Optics, 1995, Beijing, Ordnance Industry Press: 210

[18]

HuangY., HuangH., RenX.. Journal of Lasers, 2004, 31: 1385

[19]

LuoW., HuangY., HuangH., MiaoA.. Journal of Optoelectronics Laser, 2009, 20: 567

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/