Effect of detuning on the few-cycle laser pulse propagation in the three-level atomic medium

Lei Wang , Bian Liang , Zhen-dong Wang , Xi-jun Fan

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (2) : 157 -160.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (2) : 157 -160. DOI: 10.1007/s11801-010-9206-4
Article

Effect of detuning on the few-cycle laser pulse propagation in the three-level atomic medium

Author information +
History +
PDF

Abstract

The effect of detuning on the few-cycle laser pulse propagation in the ladder-type three-level atomic medium is investigated by using the numerical solution from the Maxwell-Bloch equations without the slowly varying envelope and rotating-wave approximations. The results show that in the resonance case, the obvious variation of the pulse form, including the carrierenvelope phase, the pulse duration, the oscillation amplitude and frequency, even the pulse splitting will occur in the propagation, and the output pulse is much different from the input. In the off-resonance case, the varying detuning also can lead to the considerable variation of the pulse form in the propagation. However, with an appropriate detuning, the selfinduced transparency can be realized, and the output pulse exactly the same as the input can be obtained.

Keywords

Output Pulse / Resonance Case / Resonant Case / Pulse Form / Atomic Medium

Cite this article

Download citation ▾
Lei Wang, Bian Liang, Zhen-dong Wang, Xi-jun Fan. Effect of detuning on the few-cycle laser pulse propagation in the three-level atomic medium. Optoelectronics Letters, 2010, 6(2): 157-160 DOI:10.1007/s11801-010-9206-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrabecT., KrauszF.. Rev. Mod. Phys., 2000, 72: 545

[2]

ScrinziA., IvanovM. Y., KienbergerR., VilleneuveD. M.. J. Phys. B: At. Mol. Opt., 2006, 39: R1

[3]

MorishitaT., LeA.-T., ChenZ., LinC. D.. Phys. Rev. Lett., 2008, 100: 013903

[4]

SchmidK., VeiszL., TavellaF., BenavidesS., TautzR., HerrmannD., BuckA., HiddingB., MarcinkeviciusA., SchrammU., GeisslerM., Meyer-ter-VehnJ., HabsD., KrauszF.. Phys. Rev. Lett., 2009, 102: 124801

[5]

KrauszF., IvanovM.. Rev. Mod. Phys., 2009, 81: 163

[6]

GuoY. P., WangZ. Y., WangY. F., JiaD. F.. J. Optoelectronics Laser, 2009, 20: 152

[7]

WuF. T., ZengX. H., ChenY. B., GuoD. D.. J. Optoelectronics · Laser, 2008, 19: 263

[8]

NetzR., FeurerT.. Phys. Rev. A, 2001, 64: 043808

[9]

de AraujoL. E. E.. Phys. Rev. A, 2006, 73: 053821

[10]

LoikoYu., SerratC., VilasecaR., AhufingerV., MompartJ., CorbalánR.. Phys. Rev. A, 2007, 75: 023801

[11]

LoikoYu., SerratC.. Phys. Rev. A, 2006, 73: 063809

[12]

SongX. H., YangW. F., GongS. Q., XuZ. Z.. Phys. Rev. A, 2007, 76: 033827

[13]

SongX. H., GongS. Q., XuZ. Z.. Optics and Spectroscopy, 2005, 99: 517

[14]

YangW. F., SongX. H., GongS. Q., ChengY., XuZ. Z.. Phys. Rev. Lett., 2007, 99: 133602

[15]

MaH., FanX., TanX., LuH., XuZ.. Opt. Commun., 2008, 281: 4493

[16]

TanX., FanX., YangY., TongD.. J. Modern Opt., 2008, 55: 2439

[17]

YeeK. S.. IEEE Trans. Antennas Propag., 1966, 14: 302

[18]

ZiolkowskiR.W., ArnoldJ. M., GognyD. M.. Phys. Rev. A, 1995, 52: 3082

[19]

McCallS. L., HahnE. L.. Phys. Rev. Lett., 1967, 18: 908

[20]

LambG. L.Jr. Rev. Mod. Phys., 1971, 43: 99

[21]

TarasishinA. V., MagnitskiiS. A., ShuaevV. A., ZheltikovA.. Opt. Express, 2001, 8: 452

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/