Effect of detuning on the few-cycle laser pulse propagation in the three-level atomic medium

Lei Wang, Bian Liang, Zhen-dong Wang, Xi-jun Fan

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (2) : 157-160.

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (2) : 157-160. DOI: 10.1007/s11801-010-9206-4
Article

Effect of detuning on the few-cycle laser pulse propagation in the three-level atomic medium

Author information +
History +

Abstract

The effect of detuning on the few-cycle laser pulse propagation in the ladder-type three-level atomic medium is investigated by using the numerical solution from the Maxwell-Bloch equations without the slowly varying envelope and rotating-wave approximations. The results show that in the resonance case, the obvious variation of the pulse form, including the carrierenvelope phase, the pulse duration, the oscillation amplitude and frequency, even the pulse splitting will occur in the propagation, and the output pulse is much different from the input. In the off-resonance case, the varying detuning also can lead to the considerable variation of the pulse form in the propagation. However, with an appropriate detuning, the selfinduced transparency can be realized, and the output pulse exactly the same as the input can be obtained.

Keywords

Output Pulse / Resonance Case / Resonant Case / Pulse Form / Atomic Medium

Cite this article

Download citation ▾
Lei Wang, Bian Liang, Zhen-dong Wang, Xi-jun Fan. Effect of detuning on the few-cycle laser pulse propagation in the three-level atomic medium. Optoelectronics Letters, 2010, 6(2): 157‒160 https://doi.org/10.1007/s11801-010-9206-4

References

[1]
BrabecT., KrauszF.. Rev. Mod. Phys., 2000, 72: 545
CrossRef Google scholar
[2]
ScrinziA., IvanovM. Y., KienbergerR., VilleneuveD. M.. J. Phys. B: At. Mol. Opt., 2006, 39: R1
CrossRef Google scholar
[3]
MorishitaT., LeA.-T., ChenZ., LinC. D.. Phys. Rev. Lett., 2008, 100: 013903
CrossRef Google scholar
[4]
SchmidK., VeiszL., TavellaF., BenavidesS., TautzR., HerrmannD., BuckA., HiddingB., MarcinkeviciusA., SchrammU., GeisslerM., Meyer-ter-VehnJ., HabsD., KrauszF.. Phys. Rev. Lett., 2009, 102: 124801
CrossRef Google scholar
[5]
KrauszF., IvanovM.. Rev. Mod. Phys., 2009, 81: 163
CrossRef Google scholar
[6]
GuoY. P., WangZ. Y., WangY. F., JiaD. F.. J. Optoelectronics Laser, 2009, 20: 152
[7]
WuF. T., ZengX. H., ChenY. B., GuoD. D.. J. Optoelectronics · Laser, 2008, 19: 263
[8]
NetzR., FeurerT.. Phys. Rev. A, 2001, 64: 043808
CrossRef Google scholar
[9]
de AraujoL. E. E.. Phys. Rev. A, 2006, 73: 053821
CrossRef Google scholar
[10]
LoikoYu., SerratC., VilasecaR., AhufingerV., MompartJ., CorbalánR.. Phys. Rev. A, 2007, 75: 023801
CrossRef Google scholar
[11]
LoikoYu., SerratC.. Phys. Rev. A, 2006, 73: 063809
CrossRef Google scholar
[12]
SongX. H., YangW. F., GongS. Q., XuZ. Z.. Phys. Rev. A, 2007, 76: 033827
CrossRef Google scholar
[13]
SongX. H., GongS. Q., XuZ. Z.. Optics and Spectroscopy, 2005, 99: 517
CrossRef Google scholar
[14]
YangW. F., SongX. H., GongS. Q., ChengY., XuZ. Z.. Phys. Rev. Lett., 2007, 99: 133602
CrossRef Google scholar
[15]
MaH., FanX., TanX., LuH., XuZ.. Opt. Commun., 2008, 281: 4493
CrossRef Google scholar
[16]
TanX., FanX., YangY., TongD.. J. Modern Opt., 2008, 55: 2439
CrossRef Google scholar
[17]
YeeK. S.. IEEE Trans. Antennas Propag., 1966, 14: 302
CrossRef Google scholar
[18]
ZiolkowskiR.W., ArnoldJ. M., GognyD. M.. Phys. Rev. A, 1995, 52: 3082
CrossRef Google scholar
[19]
McCallS. L., HahnE. L.. Phys. Rev. Lett., 1967, 18: 908
CrossRef Google scholar
[20]
LambG. L.Jr. Rev. Mod. Phys., 1971, 43: 99
CrossRef Google scholar
[21]
TarasishinA. V., MagnitskiiS. A., ShuaevV. A., ZheltikovA.. Opt. Express, 2001, 8: 452
CrossRef Google scholar

This work has been supported by the National Basic Research Program of China (No. 2006CB806000), and the Open Fund of the State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, China.

Accesses

Citations

Detail

Sections
Recommended

/