Influence of temperature on Auger recombination lifetime in In1−xGaxAs materials

Yu-chun Chang, Chang-xin Tian, Yan Ma, Jing-zhi Yin, Qiang Gao, Yi-ding Wang, Fu-bin Gao, Guo-tong Du

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (1) : 31-33.

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (1) : 31-33. DOI: 10.1007/s11801-010-9188-2
Article

Influence of temperature on Auger recombination lifetime in In1−xGaxAs materials

Author information +
History +

Abstract

The influence of temperature and Ga composition on Auger recombination lifetime in n-type and p-type In1−xGaxAs materials is investigated through the simulation, assuming the concentrations of electrons and holes are 1017 cm−3 and 1018 cm−3, respectively. The results show that the temperature has little influence on Auger recombination lifetime of In1−xGaxAs materials at x<0.3. However, it has a great impact when x>0.3 and the effect is more obvious at a lower temperature. Moreover, Auger recombination lifetime of p-type In1−xGaxAs is longer than that of n-type In1−xGaxAs with the same temperature, Ga composition and carriers concentration.

Keywords

Auger / Carrier Concentration / Gallium Arsenide / Auger Recombination / Light Hole

Cite this article

Download citation ▾
Yu-chun Chang, Chang-xin Tian, Yan Ma, Jing-zhi Yin, Qiang Gao, Yi-ding Wang, Fu-bin Gao, Guo-tong Du. Influence of temperature on Auger recombination lifetime in In1−xGaxAs materials. Optoelectronics Letters, 2010, 6(1): 31‒33 https://doi.org/10.1007/s11801-010-9188-2

References

[1]
ChenL.-h.. Infrared and Laser Engineering, 2008, 37: 1
[2]
OzerS., CellekO. O., BesikciC.. Infrared Physics and Technology, 2005, 47: 115
CrossRef Google scholar
[3]
LatikaB.. Proc. of SPIE, 2005, 5881: 588105
CrossRef Google scholar
[4]
ZhangK.-f., TangH.-j., LiT., LiY.-f., NingJ.-h., LiX., GongH.-m.. Journal of Optoelectronics · Laser, 2009, 20: 713
[5]
WangQ., RenX.-m., XiongD.-p., ZhouJ., LvJ.-h., HuangH., HuangY.-q., CaiS.-w.. Journal of Optoelectronics·Laser, 2007, 18: 1143
[6]
HenryY., JongwooK., GaryA., JoyceL., KaiS., JosephK.C., TedW.. Proc. of SPIE, 2008, 6950: 695000
[7]
RogalskiA., OrmanZ.. Infrared Phys., 1985, 25: 551
CrossRef Google scholar
[8]
TakeshimaM.. J. Appl. Phys., 1972, 43: 4114
CrossRef Google scholar
[9]
GelmontB.L.. Phys. Lett. A, 1978, 66: 323
CrossRef Google scholar
[10]
TianY., ZhouT.M., ZhangB.L., JiangH., JinY.X.. Opt. Eng., 1998, 37: 1754
CrossRef Google scholar
[11]
PaulS., RoyJ.B., BasuP.K.. J. Appl. Phys., 1991, 69: 827829
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.60676039), the National High Technology Research and Development Program of China (No.2007AA06Z112), Research Fund for the Doctoral Program of Higher Education of China (No. 20060183030), and the Science and Technology Department of Jilin Province (No.20070709).

Accesses

Citations

Detail

Sections
Recommended

/