Polarizability and abnormal infrared spectra of molecules adsorbed on metal nanostructured surfaces

Xiao-jing Huang , Rong-yi You , Xiu-lin Wang , Xiao-ming Fu , Hui-li Zhu

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (6) : 473 -476.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (6) : 473 -476. DOI: 10.1007/s11801-010-9182-8
Article

Polarizability and abnormal infrared spectra of molecules adsorbed on metal nanostructured surfaces

Author information +
History +
PDF

Abstract

Based on the experimental results of abnormal infrared effects (AIREs) for molecules adsorbed on transition-metal nanostructured surfaces, the interactions and the polarizability of the adsorbed molecules are analyzed theoretically. By numerical simulations, the normal absorption spectrum, the Fano-like bipolar spectrum and the anti-absorption spectrum of the adsorbed CO molecules are obtained respectively. The results show that the adsorbed molecules on a metal nanostructured surface can accumulate together dues to the effect of local external electric field, which leads to a change in imaginary part of the molecular polarizability within a certain range of frequency, and even a negative value may appear.

Keywords

Adsorbed Molecule / Local Electric Field / Infrared Absorption Spectrum / Nanostructured Surface / Spectral Line Shape

Cite this article

Download citation ▾
Xiao-jing Huang, Rong-yi You, Xiu-lin Wang, Xiao-ming Fu, Hui-li Zhu. Polarizability and abnormal infrared spectra of molecules adsorbed on metal nanostructured surfaces. Optoelectronics Letters, 2010, 6(6): 473-476 DOI:10.1007/s11801-010-9182-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LinW.-G., SunS.-G., ZhouZ.-Y., ChenS.-P., WangH.-C.. J. Phys. Chem. B, 2002, 106: 11778

[2]

GongH., SunS.-G., LiJ.-T., ChenY.-J., ChenS.-P.. Electrochim. Acta, 2003, 48: 2933

[3]

GongH., SunS.-G., ChenY.-J., ChenS.-P.. J. Phys. Chem. B, 2004, 108: 11575

[4]

MehmoodF., KaraA. b., RahmanT. S., BohnenK. P.. Phys. Rev. B, 2006, 74: 155439

[5]

YuanZ.-h., ZhangM.-y., DuanY.-q., WangD.-j.. Journal of Optoelectronics · Laser, 2009, 20: 212

[6]

MehmoodF., KaraA., RahmanT. S., HenryC. R.. Phys. Rev. B, 2009, 79: 075422

[7]

van BeurdenP., VerhoevenH. G. J., KramerG. J.. Phys. Rev. B, 2002, 66: 235409

[8]

JiaH.-Y., WangZ.-X.. Acta Physico-Chimica Sinica, 2004, 20: 144

[9]

Crljen, LangrethD. C.. Phys. Rev. B, 1987, 35: 4224

[10]

ChoM., HessC., BonnM.. Phys. Rev. B, 2002, 65: 205423

[11]

FahsoldG., SintherM., PriebeA., DiezS., PucciA.. Phys. Rev. B, 2002, 65: 235408

[12]

JakobP.. Appl. Phys. A, 2002, 75: 45

[13]

PinchukA., KreibigU., HilgerA.. Surf. Sci., 2004, 557: 269

[14]

ZhdanovV. P., KasemoB.. Phys. Rev. B, 1997, 56: R10067

[15]

SunZ.-j., KimH.-k.. Journal of Optoelectronics · Laser, 2008, 19: 869

[16]

HernandezE. S., ColeM. W., BoninsegniM.. Phys. Rev. B, 2003, 68: 125418

[17]

HuangX.-J., HeS.-Z., WuC.-X.. Chinese Physics, 2006, 15: 2389

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/