Effect of carrier recombination mechanisms on the open circuit voltage of n+-p GaInAsSb thermophotovoltaic cells

Xin-cun Peng , Xin Guo , Bao-lin Zhang , Xiang-ping Li , Xiaowei Zhao , Xin Dong , Wei Zheng , Guo-tong Du

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (1) : 11 -14.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (1) : 11 -14. DOI: 10.1007/s11801-010-9130-7
Article

Effect of carrier recombination mechanisms on the open circuit voltage of n+-p GaInAsSb thermophotovoltaic cells

Author information +
History +
PDF

Abstract

By analyzing the main recombination mechanisms in GaInAsSb materials, the dependences of the dark current density and open circuit voltage in n+-p GaInAsSb thermophotovoltaic cells on the recombination parameters, carrier concentration and cell thickness are calculated. The results show that the dark current mainly comes from p-region, and it is related with the surface and Auger recombinations in low and high carrier concentration ranges, respectively. The surface and Auger recombinations can be suppressed by reducing the surface recombination velocity and carrier concentration, respectively. The dark current density can be suppressed by optimizing material parameters and device surface passivation technique. So the high open circuit voltage can be obtained for GaInAsSb thermophotovoltaic cells.

Keywords

GaSb / Open Circuit Voltage / Minority Carrier / Auger Recombination / Minority Carrier Lifetime

Cite this article

Download citation ▾
Xin-cun Peng, Xin Guo, Bao-lin Zhang, Xiang-ping Li, Xiaowei Zhao, Xin Dong, Wei Zheng, Guo-tong Du. Effect of carrier recombination mechanisms on the open circuit voltage of n+-p GaInAsSb thermophotovoltaic cells. Optoelectronics Letters, 2010, 6(1): 11-14 DOI:10.1007/s11801-010-9130-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangC. A.. J. Cryst. Growth, 2004, 272: 664

[2]

DashiellM. W., BeausangJ. F., EhsaniH., NicholsG. J., DepoyD. M., DanielsonL. R., TalamoP., RahnerK. D., BrownE. J., BurgerS. R., FourspringP. M., TopperW. F.Jr., BaldasaroP. F., WangC. A., HuangR. K., ConnorsM. K., TurnerG. W., ShellenbargerZ. A., TaylorG., LiJ., MartinelliR., DonetskiD., AnikeevS., BelenkyG. L., LuryiS.. IEEE Trans. Electron Devices, 2006, 53: 2879

[3]

HitchcockC. W., GutmannR. J., EhsaniH., BhatI. B., WangC. A., FreemanM. J., CharacheG. W.. J. Cryst. Growth, 1998, 195: 363

[4]

SzeS. M.. Physics of Semiconductor Devices, 1999, 2nd Ed.New York, Wiley: 800

[5]

ChubbD. L.. Fundamentals of Thermophotovoltaic Energy Conversion, 2007, 1st Ed. Germany, Elsevier: 291

[6]

AnikeevS., DonetskyD., BelenkyG., LuryiS., WangC. A., BorregoJ. M., NicholsG.. Appl. Phys. Lett., 2003, 83: 3317

[7]

DonetskyD., AnikeevS., BelenkyG., LuryiS., WangC. A., NicholsG.. Appl. Phys. Lett., 2002, 81: 4769

[8]

DonetskiD., AnikeevS., GuN., BelenkyG., LuryiS., WangC. A., ShiauD. A., DashiellM., BeausangJ., NicholsG.. AIP Conf. Proc., 2004, 738: 320

[9]

TianY., ZhouT., ZhangB., JiangH., JinY.. IEEE Trans. Electron Devices, 1999, 46: 656

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/