Improved nonorthogonal decoy state method in quantum key distribution with a parametric down-conversion source

Yuan-yuan Zhou , Xue-jun Zhou , Jun Gao

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (5) : 396 -400.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (5) : 396 -400. DOI: 10.1007/s11801-010-9113-8
Article

Improved nonorthogonal decoy state method in quantum key distribution with a parametric down-conversion source

Author information +
History +
PDF

Abstract

With parametric down-conversion sources (PDCSs), the nonorthogonal decoy state protocol based on one vacuum and two weak decoy states is presented. The detection events on Bob’s side are divided into two groups depending on whether Alice gets a trigger or not: triggered components and nontriggered components. The triggered components are used to estimate the fractions and error rates of single-photon and two-photon pulses, and then the final secure key rate is deduced. Besides, both triggered and nontriggered components are used to deduce a more accurate value of the key generation rate. The simulation of the final key generation rate over transmission distance shows that the first method can obtain a key generation rate close to the theoretical limit of the infinite decoy state protocol, while the second method is better.

Keywords

Decoy State / Photon Number Splitting / Decoy State Method / Photon Number Splitting Attack / Trigger Component

Cite this article

Download citation ▾
Yuan-yuan Zhou, Xue-jun Zhou, Jun Gao. Improved nonorthogonal decoy state method in quantum key distribution with a parametric down-conversion source. Optoelectronics Letters, 2010, 6(5): 396-400 DOI:10.1007/s11801-010-9113-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bennett C H and Brassard G, IEEE International Conference on Computer, Systems and Signals Processing, 175 (1984).

[2]

WangX.-b.. Phys. Rev. Lett., 2005, 94: 230503

[3]

HwangW. Y.. Phys. Rev. Lett., 2003, 91: 057901

[4]

MaX.-f., QiB., ZhaoY., LoH. K.. Phys. Rev. A, 2005, 72: 012326

[5]

WangX.-b.. Phys. Rev. A, 2005, 72: 012322

[6]

CurtyM., MaX.-f., QiB., MoroderT.. Phys. Rev. A, 2010, 81: 022310

[7]

HuangY.-x., LiangR.-s., HuH.-p., LuY., WangJ.-d., LiuS.-h.. Journal of Optoelectronics · Laser, 2008, 19: 1521

[8]

LiX.-g., JiaZ.-h.. Journal of Optoelectronics · Laser, 2008, 19: 1227

[9]

MauererW., SilberhornC.. Phys. Rev. A, 2007, 75: 050305

[10]

MaX.-f., LoH. K.. New Journal of Physics, 2008, 10: 073018

[11]

WangQ., WangX.-b., GuoG.-c.. Phys. Rev. A, 2007, 75: 012312

[12]

AdachiY., YamamotoT., KoashiM., ImotoN.. Phys. Rev. Lett., 2007, 99: 180503

[13]

WangQ., WangX.-b., BjörkG., KarlssonA.. A Lett. Journal Exploring, 2007, 79: 40001

[14]

ScaraniV., AcinA., RibordyG., GisinN.. Phys. Rev. Lett., 2004, 92: 057901

[15]

GottesmanD., LoH. K., LutkenhausN., PreskillJ.. Quantum Inform. Comput., 2004, 4: 325

[16]

GobbyC., YuanZ. L., ShieldsA. J.. Phys. Rev. Lett., 2004, 84: 3762

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/