Effects of the Cr doping on structure and optical properties of ZnO thin films

Chang-feng Fu, Xi-ming Chen, Lan Li, Lian-fu Han, Xiaoguo Wu

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (1) : 37-40.

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (1) : 37-40. DOI: 10.1007/s11801-010-9015-9
Article

Effects of the Cr doping on structure and optical properties of ZnO thin films

Author information +
History +

Abstract

Cr-doped ZnO thin films are prepared on glass substrates by the magnetron sputtering technique. An X-ray diffraction (XRD) is used to analyze the structural properties of the thin films. It indicates that all the thin films have a preferential c-axis orientation. The peak position of the (002) plane shifts to the higher 2θ value, and the peak intensity decreases with the increase of Cr doping. The results of the scanning electron microscopy (SEM) show that the surface morphology becomes loose with the increase of Cr doping. Besides, it is found from the photoluminescence (PL) measurement at room temperature that the ultraviolet emission peak and green emission band are located at 375 nm and 520 nm, respectively, and both intensities of them decrease with the increase of the Cr doping concentration, while the band gap of the ultraviolet emission shifts to the lower wavelength. The experimental results confirm that the optimal Cr doping concentration is 2 at. %.

Keywords

Ultraviolet Emission / Near Band Edge / Near Band Edge Emission / Green Emission Band / Plane Shift

Cite this article

Download citation ▾
Chang-feng Fu, Xi-ming Chen, Lan Li, Lian-fu Han, Xiaoguo Wu. Effects of the Cr doping on structure and optical properties of ZnO thin films. Optoelectronics Letters, 2010, 6(1): 37‒40 https://doi.org/10.1007/s11801-010-9015-9

References

[1]
JangM. S., RyuM. K., YoonM. H.. Current Applied Physics, 2009, 9: 651
CrossRef Google scholar
[2]
ShiL., ShenH., JiangL.. Mater. Lett., 2007, 61: 4735
CrossRef Google scholar
[3]
JiaoB.-c., ZhangX.-d., ZhaoY.. Journal of Optoelectronics-Laser, 2008, 19: 482
[4]
TengX.-y., LiuC.-c., HaoQ.-y.. Journal of Optoelectronics-Laser, 2007, 18: 1058
[5]
ZhangX., ZhangX.-d., BianN.. Journal of Optoelectronics-Laser, 2009, 20: 200
[6]
SrivastavaA. K., DeepaM., BahadurN.. Materials Chemistry and Physics, 2009, 114: 194
CrossRef Google scholar
[7]
ZhangJ., CongL., WanH.. Appl. Surf. Sci., 2009, 255: 3530
CrossRef Google scholar
[8]
ChoiM. H., MaT. Y.. Mater. Lett., 2008, 62: 1835
CrossRef Google scholar
[9]
WangX. B., SongC., GengK. W.. Appl. Surf. Sci., 2007, 253: 6905
CrossRef Google scholar
[10]
LoriteI., Rubio-MarcosF., RomeroJ. J.. Mater. Lett., 2009, 63: 212
CrossRef Google scholar
[11]
ZhuL. p., LiJ. s., YeZ. z.. Optical Materials, 2008, 31: 237
CrossRef Google scholar
[12]
XueH., XuX. L., ChenY.. Appl. Surf. Sci., 2008, 255: 1806
CrossRef Google scholar
[13]
RobertsB. K., PakhomovA. B., ShutthanandanV. S.. J. Appl. Phys., 2005, 97: 10D310
CrossRef Google scholar
[14]
ZhugeL., WuX.. Scripta Materialia, 2009, 60: 214
CrossRef Google scholar
[15]
LiL., LiuH., LuoX.. Solid State Communications, 2008, 146: 420
CrossRef Google scholar
[16]
ElanchezhiyanJ., BhuvanaK. P., GopalakrishnanN.. Journal of Alloys and Compounds, 2009, 468: 7
CrossRef Google scholar
[17]
WangB.. Javed Iqbal and SHAN Xudong, Materials Chemistry and Physics, 2009, 113: 103
CrossRef Google scholar
[18]
JinZ., MurakamiM., FukumuraT.. Journal of Crystal Growth, 2000, 214/215: 55
CrossRef Google scholar
[19]
LiJ.-H., ZhangX.-T., LiuY.-C.. Chem. J. Chinese Universities, 2003, 24: 1830
[20]
KangJ. S., KangH. S., PangS. S.. Thin Solid Films, 2003, 443: 5
CrossRef Google scholar
[21]
WangY. G., LauS. P., LeeH. W.. J. Appl. Phys., 2003, 94: 354
CrossRef Google scholar
[22]
WangY. G., LauS. P., ZhangX. H.. Journal of Crystal Growth, 2003, 259: 335
CrossRef Google scholar
[23]
LinB. X., FuZ. X., JiaY. B.. Appl. Phys. Lett., 2001, 79: 9432945

This work has been supported by Tianjin Natural Science Foundation (No. 06YFJZJC00100).

Accesses

Citations

Detail

Sections
Recommended

/