Fractional Fourier transform for annular flat-topped beams

Bin Tang , Yi Jin , Mei-ping Jiang

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (1) : 72 -76.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (1) : 72 -76. DOI: 10.1007/s11801-010-8138-3
Article

Fractional Fourier transform for annular flat-topped beams

Author information +
History +
PDF

Abstract

The fractional Fourier transform (FRFT) is applied to treat the propagation of annular flat-topped beams. Based on the definition of FRFT in the cylindrical coordinate system, analytical formulae are derived for annular flat-topped beams through the FRFT optical systems. By using the formulae, the properties of annular flat-topped beams in the FRFT plane are illustrated numerically. The results show that the intensity distribution properties in the FRFT plane are closely related to the fractional order of the FRFT optical system and initial beam parameters.

Keywords

Fractional Order / Gaussian Beam / Cylindrical Coordinate System / Unstable Resonator / Beam Order

Cite this article

Download citation ▾
Bin Tang, Yi Jin, Mei-ping Jiang. Fractional Fourier transform for annular flat-topped beams. Optoelectronics Letters, 2010, 6(1): 72-76 DOI:10.1007/s11801-010-8138-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

OzaktasH. M., MendlovicD.. J. Opt. Soc. Am. A, 1993, 10: 2522

[2]

MendlovicD., OzaktasH. M.. J. Opt. Soc. Am. A, 1993, 10: 1875

[3]

LohmannA. W.. J. Opt. Soc. Am. A, 1993, 10: 2181

[4]

ZhangY., DongB., GuB., YangG.. J. Opt. Soc. Am. A, 1998, 15: 1114

[5]

XueX., WeiH. Q., KirkA. G.. Opt. Lett., 2001, 26: 1746

[6]

SunY., ZhaiH., YangX., WangM.. Journal of Optoelectronics · Laser, 2008, 19: 952

[7]

CaiY., LinQ.. J. Opt. A: Pure Appl. Opt., 2003, 5: 272

[8]

CaiY., LinQ.. Opt. Commun., 2003, 217: 7

[9]

ZhengC.. Phys. Lett. A, 2006, 355: 156

[10]

LinQ., CaiY.. Opt. Lett., 2002, 27: 1672

[11]

CaiY., LinQ.. J. Opt. Soc. Am. A, 2003, 20: 1528

[12]

TangB., XuM.. J. Mod. Opt., 2009, 56: 1276

[13]

ChangJ. J.. Appl. Opt., 1994, 33: 2255

[14]

SaghafiS., WithfordM. J., PiperJ. A.. J. Opt. Soc. Am. A, 2001, 18: 1634

[15]

TovarA. A.. J. Opt. Soc. Am. A, 2001, 18: 1897

[16]

ErdelyiA., MagnusW., OberhettingerF.. Tables of Integral Transforms, 1954, New York, McGraw-Hill

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/