Investigation of wave breaking in the normal dispersion region of nano-structured photonic crystal fibers

Lei Zhang , Shu-guang Li , Bo Fu , Yan-yan Yao , Mei-yan Zhang , Guo-bing Yin

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (6) : 401 -405.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (6) : 401 -405. DOI: 10.1007/s11801-010-0111-7
Article

Investigation of wave breaking in the normal dispersion region of nano-structured photonic crystal fibers

Author information +
History +
PDF

Abstract

The propagation of femtosecond laser pulses with wavelengths of 1550 nm, 1064 nm, 800 nm and 700 nm, respectively, which are in the normal dispersion region of the nano-structured photonic crystal fiber (N-PCF) with interesting broadband normal dispersion and highly nonlinear properties, is studied. For the effect of chirp variation mainly induced by group velocity dispersion (GVD) and self-phase modulation (SPM), after propagation over a short length, the wave breaking occurs. Namely, oscillatory structures are presented near pulse edges and sidelobes appear in the pulse spectrum. In the case of 800 nm, after the propagation of 20 mm, a super flat spectrum is obtained. The bandwidth of the super flat spectrum is associated with the dispersion length and the nonlinear length. By choosing N-PCF and laser pulse with appropriate parameters, a broadband super flat spectrum in a short length can be achieved.

Keywords

Laser Pulse / Dispersion Coefficient / Wave Breaking / Group Velocity Dispersion / Pulse Spectrum

Cite this article

Download citation ▾
Lei Zhang, Shu-guang Li, Bo Fu, Yan-yan Yao, Mei-yan Zhang, Guo-bing Yin. Investigation of wave breaking in the normal dispersion region of nano-structured photonic crystal fibers. Optoelectronics Letters, 2010, 6(6): 401-405 DOI:10.1007/s11801-010-0111-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KurokawaK., IedaK., TajimaK., NakajimaK., ShirakiK., SankawaI.. Opt. Express, 2007, 15: 397

[2]

TraversJ. C., RulkovA. B., CumberlandB. A., PopovS. V., TaylorJ. R.. Opt. Express, 2008, 16: 14435

[3]

ZhouH. L., ZhangX., GaoJ., HuangY. Q., RenX. M.. Journal of Optoelectronics · Laser, 2009, 20: 28

[4]

LiX. B., ChaiL., ZhangY. Y., HuM. L., LiX. Y., WangQ. Y.. Journal of Optoelectronics · Laser, 2009, 20: 260

[5]

ZhangB., GuoK., TianJ. R., SongY. R.. Proceedings of the SPIE, 2008, 6839: 68390Z

[6]

A. Plotski, A. A. Sysoliatin, P. Harper, J. Harrison, A. I. Latkin and S. K. Turitsyn, Conference on Lasers and Electro-Optics, and the International Quantum Electronics Conference, 2007.

[7]

GattassR. R., SvachaG. T., TongL. M., MazurE.. Opt. Express, 2006, 14: 9408

[8]

MalikH. K., KawataS.. Phys. Plasmas, 2007, 14: 102110

[9]

AndersonD., DesaixM., LisakM., Quiroga-TeixeiroM. L.. J. Opt. Soc. Am. B, 1992, 9: 1358

[10]

AndersonD., DesaixM., KarlssonM., LisakM., Quiroga-TeixeiroM. L.. J. Opt. Soc. Am. B, 1993, 10: 1185

[11]

TongL. M., LouJ. Y., MazurE.. Opt. Express, 2004, 12: 1025

[12]

TongL. M., HuL. L., ZhangJ. J., QiuJ. R., YangQ., LouJ. Y., ShenY. H., HeJ. L., YeZ. Z.. Opt. Express, 2006, 14: 82

[13]

TongL. M., GattassR. R., AshcomJ. B., HeS. L., LouJ. Y., ShenM. Y., MaxwellI., MazurE.. Nature, 2003, 426: 816

[14]

D. Chen, International Symposium on Biophotonics, Nanophotonics and Metamaterials, 362 (2006).

[15]

WhiteD. J., StoddartP. R.. Opt. Lett., 2005, 30: 598

[16]

DaineseP., RussellP. S. J., JolyN., KnightJ. C., WiederheckerG. S., FragnitoH. L., LaudeV., KhelifA.. Nature Physics, 2006, 2: 388

[17]

LiS. G., XingG. L., ZhouG. Y., HanY., HouL. T., HuM. L., LiY. F., WangQ. Y.. Chinese Physics, 2006, 15: 437

[18]

AgrawalG. P.. Nonlinear Fiber Optics, 2001, 3rd EditionSan Diego, Academic Press

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/