Design of integrated microlens for collimation of the vertical-cavity surface emitting laser array

Yong-sheng Hu , Shu-juan Ye , Zhen-fu Wang , Li Qin , Yong-qiang Ning

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (6) : 421 -425.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (6) : 421 -425. DOI: 10.1007/s11801-010-0101-9
Article

Design of integrated microlens for collimation of the vertical-cavity surface emitting laser array

Author information +
History +
PDF

Abstract

A method based on the theory of transfer matrix to design the integrated microlens for the collimation of vertical-cavity surface emitting laser (VCSEL) array is presented. The integrated microlenses fabricated on the substrate directly and on a certain polymer material which is on the substrate are considered. The relationships between the radius of curvature, beam waist and the divergence angle after collimation are obtained with the help of ZEMAX. The results show that the devices with the divergence angle of 15° (1/e2) and beam waist of 2 μm can be improved to those with the divergence angle lower than 1°, and the devices with beam waist of 10 μm can be improved to those with the divergence angle lower than 3°, which is a good reference for manufacturing high-power devices with small divergence angle. The conclusions including increasing the thicknesses of both the substrate and polymer material and reducing the diameter of oxidized layer are drawn, which will be an important guidance for experiment research.

Keywords

Polymer Material / Transfer Matrix / Divergence Angle / Beam Waist / IEEE Photonic Tech

Cite this article

Download citation ▾
Yong-sheng Hu, Shu-juan Ye, Zhen-fu Wang, Li Qin, Yong-qiang Ning. Design of integrated microlens for collimation of the vertical-cavity surface emitting laser array. Optoelectronics Letters, 2010, 6(6): 421-425 DOI:10.1007/s11801-010-0101-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhouB.-k.. Principles of Lasers, 2007, Beijing, National Defense Industrial Press: 82

[2]

ChenH.-L., FrancisD., NguyenT., YuenW., LiG., Chang-HasnainC.. IEEE Photonics Technology Letters, 1999, 11: 506

[3]

RastaniK., OrensteinM., KaponE., Von LehmenA. C.. Optics Letters, 1991, 16: 919

[4]

StrzeleckaE. M., RobinsonG. D., PetersM. G., PetersF. H., ColdrenL. A.. Electronics Letters, 1995, 31: 724

[5]

FuY., KokN., BryanA.. Optics Express, 2002, 10: 413

[6]

ParkS.-H., ParkY., KimH., JeonH.. Applied Physics Letters, 2002, 80: 183

[7]

LevalloisC., BardinalV., VergnenègreC., LeïchléT., CampsT., DaranE., DoucetJ.-B.. Proceedings of SPIE, 2008, 6992: 69920W

[8]

ZhangY.-m., ZouD.-s., HanJ.-r., ShenG.-d.. Journal of Optoelectronics·Laser, 2009, 20: 174

[9]

KimH. S., KimJ.-T., ParkJ. R., ParkS.-H.. Journal of the Korean Physical Society, 2006, 49: 401

[10]

WangZ.-f., NingY.-q., ZhangY., ShiJ.-j., LiT., CuiJ.-J., LiuG.-Y., ZhangX., QinL., LiuY., WangL.-j.. Journal of Optoelectronics·Laser, 2009, 20: 709

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/