A ferroelectric polyvinylidene fluoride-coated porous fiber based surface-plasmon-resonance-like gas sensor in the terahertz region

Lei Jing, Jian-quan Yao

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (5) : 321-324.

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (5) : 321-324. DOI: 10.1007/s11801-010-0092-6
Article

A ferroelectric polyvinylidene fluoride-coated porous fiber based surface-plasmon-resonance-like gas sensor in the terahertz region

Author information +
History +

Abstract

In this paper, a ferroelectric polyvinylidene fluoride (PVDF)-coated porous polymer fiber based surface plasmon resonance (SPR)-like gas sensor is proposed theoretically in the terahertz (THz) region based on the total internal reflection (TIR). In such a sensor, the phase matching is achieved by changing the fiber parameters and the plasmon-like phenomenon at the interface between the ferroelectric polyvinylidene fluoride (PVDF) layer and the gaseous analyte is discussed. Using a fullvector finite-element method, the core-mode loss of the fiber is calculated to measure the resolution of the sensor. The amplitude resolution is demonstrated to be as low as 1.45 × 10−4 RIU, and the spectral resolution is 1.30 × 10−4 RIU in THz region, where RIU means the refractive index unit.

Keywords

Surface Plasmon Resonance / Total Internal Reflection / Effective Refractive Index / Surface Plasmon Resonance Sensor / Refractive Index Unit

Cite this article

Download citation ▾
Lei Jing, Jian-quan Yao. A ferroelectric polyvinylidene fluoride-coated porous fiber based surface-plasmon-resonance-like gas sensor in the terahertz region. Optoelectronics Letters, 2010, 6(5): 321‒324 https://doi.org/10.1007/s11801-010-0092-6

References

[1]
LiedbergB., NylanderC., RajianS. C.. Sundstrom, Sens. Actuators, 1983, 4: 299
CrossRef Google scholar
[2]
LiedbergB., NylanderC., RajianS. C.. Sundstrom, Biosens. Bioelectron., 1995, 10: 137
[3]
HomolaJ., YeeS. S., GauglitzG.. Sens. Actuators B, 1999, 54: 3
CrossRef Google scholar
[4]
WestphalP., BornmannA.. Sens. Actuators B, 2002, 84: 278
CrossRef Google scholar
[5]
WuC. M., LinL. Y.. Biosens. Bioelectron., 2004, 20: 864
[6]
FongC. C., LaiW. P., LeungY. C., Samuel LoC.-L., WongM.S., YangM.. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol., 2002, 1596: 95
CrossRef Google scholar
[7]
AryaS. K., SolankiR. P., SinghP. R., PandeyM. K., DattaM., MalhotraB.D.. Talanta, 2006, 69: 918
CrossRef Google scholar
[8]
HassaniA., SkorobogatiyM.. Optics Express, 2008, 16: 20206
CrossRef Google scholar
[9]
HidakaT.. Journal of Lightwave Technology, 2005, 23: 2469
CrossRef Google scholar
[10]
FurukawaT.. Phase Transitions, 1989, 18: 143
CrossRef Google scholar
[11]
AtakaramiansS., ShahraamAfsharV., FischerB. M.. Optics Express, 2008, 16: 8845
CrossRef Google scholar
[12]
Cocharan. The Dynamics of Atoms in Crystal, 1973, London, U. K., Edward Arnold: 129
[13]
HassniA., DupuisA., SkorobogatiyM.. Appl. Phys. Lett., 2008, 92: 071101
CrossRef Google scholar
[14]
HassaniA., DupuisA., SkorobogatiyM.. Optics Express, 2008, 16: 6340
CrossRef Google scholar
[15]
HassaniA., SkorobogatiyM.. J. Opt. Soc. Am. B, 2007, 24: 1423
CrossRef Google scholar

This work has been supported by the Major State Basic Research Development Program of China (Nos.2010CB327801 and 2007CB310403).

Accesses

Citations

Detail

Sections
Recommended

/