Optimal design of a high-speed polymer Mach-Zehnder interferometer electro-optic switch over 260 GHz

Chuan-tao Zheng , Chun-sheng Ma , Xin Yan , Xian-yin Wang , Da-ming Zhang

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (5) : 350 -354.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (5) : 350 -354. DOI: 10.1007/s11801-010-0063-y
Article

Optimal design of a high-speed polymer Mach-Zehnder interferometer electro-optic switch over 260 GHz

Author information +
History +
PDF

Abstract

By using the proposed 3-D mode propagation analysis method and point-matching method, a polymer multimode interference (MMI) Mach-Zehnder interferometer (MZI) electro-optic (EO) switch is designed and optimized for enhancing the EO modulating efficiency and matching the impedance and the velocity. The designed switch possesses low driving voltages of ±1.375 V with a short EO active region length of 5 mm under 1550 nm wavelength, and the estimated cutoff switching frequency is up to 263 GHz due to the less mismatch between the lightwave velocity and microwave velocity. The 3-dB lightwave bandwidth is 60 nm, and within the wavelength range of 1520–1580 nm, the insertion loss and crosstalk are less than 6.71 and −30 dB, respectively.

Keywords

Insertion Loss / Switching Voltage / High Switching Frequency / Access Waveguide / Integrate Optoelectronic Device

Cite this article

Download citation ▾
Chuan-tao Zheng, Chun-sheng Ma, Xin Yan, Xian-yin Wang, Da-ming Zhang. Optimal design of a high-speed polymer Mach-Zehnder interferometer electro-optic switch over 260 GHz. Optoelectronics Letters, 2010, 6(5): 350-354 DOI:10.1007/s11801-010-0063-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

EnamiY., MathineD., DeRoseC. T., NorwoodR. A., LuoJ., JenA. K. Y., PeyghambarianN.. Appl. Phys. Lett., 2009, 94: 213513

[2]

YanX., MaC. S., ZhengC.T., WangX. Y., ZhangD. M.. Optoelectron. Lett., 2009, 5: 0081

[3]

ZhengC. T., MaC. S., YanX., WangX. Y., ZhangD. M.. Opt. Commun., 2008, 281: 5998

[4]

ZhengC. T., MaC. S., YanX., WangX. Y., ZhangD. M.. Appl. Phys. B: Lasers Opt., 2010, 98: 511

[5]

WangW., LiE. B., ZhangC. L., LvP., TangC. X.. J. Optoelectron. Laser, 2008, 19: 1571

[6]

PanJ. X., GaoY., LiY., HaoY. L., LiX. H., JiangX. Q., WangM. H., YangJ. Y.. J. Optoelectron. Laser, 2008, 19: 1587

[7]

JinZ., PengG. D.. Opt. Commun., 2004, 241: 299

[8]

EnamiY., MathineD., DeRoseC. T., NorwoodR. A., LuoJ., JenA. K.Y., PeyghambarianN.. Appl. Phys. Lett., 2007, 91: 093505

[9]

EnamiY., DeRoseC. T., MathineD., LoychikC., GreenleeC., NorwoodR. A., KimT. D., LuoJ., TianY., JenA. K. Y., PeyghambarianN.. Nature Photon, 2007, 1: 180

[10]

PitoisC., VukmirovicC., HultA.. Macromolecules, 1999, 32: 2903

[11]

DriscollW. G., VaughanW.. Handbook of Optics, 1978, New York, McGraw-Hill: 7

[12]

MarcuseD.. IEEE. J. Quantum Electron., 1989, 25: 939

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/