Effects of annealing on the characteristics of ZnO films deposited in various O2/(O2+Ar) ratios

Cui-ping Li , Bao-he Yang , Xi-ming Chen , Xiao-guo Wu

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 284 -287.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 284 -287. DOI: 10.1007/s11801-010-0036-1
Article

Effects of annealing on the characteristics of ZnO films deposited in various O2/(O2+Ar) ratios

Author information +
History +
PDF

Abstract

C-axis oriented ZnO films are deposited on polished diamond substrates in various O2/(O2+Ar) ratios using the radio frequency (RF) magnetron sputtering technique and are subsequently annealed in oxygen ambience under the same conditions. Structural, morphologic and electrical properties of ZnO films are characterized by X-ray diffraction (XRD), high-resistance instrument, energy dispersive X-ray spectroscopy (EDS) and scanning electronic microscopy (SEM). As the O2/(O2+Ar) ratio increasing from 1/12 to 5/12, the crystallinity of the as grown ZnO films becomes better and the electrical resistivity increases slowly. After annealing, the ZnO films deposited in O2/(O2+Ar) =1/12 and 3/12 are improved greatly in crystallinity, and their electrical resistivity is enhanced by two orders of magnitude, while those deposited in O2/(O2+Ar) =5/12 are scarcely changed in crystallinity, and their resistivity is only increased by one order. In addition, the ZnO films deposited in O2/(O2+Ar) =3/12 and annealed in oxygen are with the best crystal quality and the highest resistivity.

Keywords

Electrical Resistivity / Surface Acoustic Wave / Zinc Interstitial / Good Crystal Quality / Diamond Substrate

Cite this article

Download citation ▾
Cui-ping Li, Bao-he Yang, Xi-ming Chen, Xiao-guo Wu. Effects of annealing on the characteristics of ZnO films deposited in various O2/(O2+Ar) ratios. Optoelectronics Letters, 2010, 6(4): 284-287 DOI:10.1007/s11801-010-0036-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YangB. H., CuiJ., XiongY., ChenX. M., SunD. Z., LiC. P.. Journal of Optoelectronics · Laser, 2008, 19: 625

[2]

MortetV., WilliamsO. A., HaenenK.. Physica Status Solidi a-Applications and Materials Science, 2008, 205: 1009

[3]

WangM. W., WooB. K., TianZ., HanJ. G., ChenW., ZhangW. L.. Optoelectronics Letters, 2009, 5: 430

[4]

DangW. L., FuY. Q., LuoJ. K., FlewittA. J., MilneW. I.. Superlattices and Microstructures, 2007, 42: 89

[5]

WangF.. Journal of Optoelectronics · Laser, 2005, 16: 28

[6]

JoY. H., MohantyB. C., ChoY. S.. Journal of the American Ceramic Society, 2009, 92: 665

[7]

KumarR., KhareN., KumarV., BhallaG. L.. Applied Surface Science, 2008, 254: 6509

[8]

KangH. S., KangJ. S., KimJ. W., LeeS. Y.. Journal of Applied Physics, 2004, 95: 1246

[9]

ChenJ. J., ZengF., LiD. M., NiuJ. B., PanF.. Thin Solid Films, 2005, 485: 257

[10]

SunJ., BaiY. Z., SunJ. C., DuG. T., JiangX.. Chinese Science Bulletin, 2008, 53: 2931

[11]

TangI. T., WangY. C., HwangW. C., HwangC. C., WuN. C., HoungM. P., WangY. H.. Journal of Crystal Growth, 2003, 252: 190

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/