Preparation of ultrawide ZnSe nanoribbons with the function of lasing cavity

De-dong Hou , Hui Wu , Ying-kai Liu

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 241 -244.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 241 -244. DOI: 10.1007/s11801-010-0030-7
Article

Preparation of ultrawide ZnSe nanoribbons with the function of lasing cavity

Author information +
History +
PDF

Abstract

Ultrawide ZnSe nanoribbons are synthesized by the simple thermal evaporation. The microstructure of ZnSe nanoribbons is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), photoluminescence (PL) and Raman spectrum. It is found that the strong emission near the band gap of ZnSe centered at 460 nm is obtained in these nanoribbons. More importantly, ZnSe nanoribbons can act as lasing emitting optical cavities. Raman studies indicate that the longitudinal optic (LO) and transverse optic (TO) phonon confinements of the ZnSe nanoribbons shift to lower frequency.

Keywords

HRTEM / ZnSe / Resonant Mode / Longitudinal Optic / Transverse Optic

Cite this article

Download citation ▾
De-dong Hou, Hui Wu, Ying-kai Liu. Preparation of ultrawide ZnSe nanoribbons with the function of lasing cavity. Optoelectronics Letters, 2010, 6(4): 241-244 DOI:10.1007/s11801-010-0030-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YodoT., KoyamaT., YamashitaK.. J. Cryst. Growth, 1988, 86: 273

[2]

TianW., WuF., ChenW. J., ZhangG. L.. Journal of Optoelectronics · Laser, 2009, 20: 342

[3]

MoralesA. M., LieberC. M.. Science, 1998, 279: 208

[4]

ShiW. S., ZhengY. F., WangN., LeeC. S., LeeS. T.. Appl. Phys. Lett., 2001, 78: 3304

[5]

DuanX., HuangY., CuiY., WangJ., LieberC. M.. Nature, 2001, 409: 66

[6]

ChenC. C., YehC. C., ChenC. H., YuM. Y., LiuH. L., WuJ. J., ChenK. H., ChenL. C., PengJ. Y., ChenY. F.. J. Am. Chem. Soc., 2001, 123: 2791

[7]

PanZ. W., DaiZ. R., WangZ. L.. Science, 2001, 291: 1947

[8]

ZapienJ. A., JiangY., MengX. M., ChenW., AuF. C. K., LifshitzY., LeeS. T.. Appl. Phys. Lett., 2004, 84: 1189

[9]

FangX. S., XiongS. L., ZhaiT. Y., BandoY.. Adv. Mater., 2009, 21: 5016

[10]

ChanY. F., DuanX. F., ChanS. K., SouI. K., ZhangX. X., WangN.. Appl. Phys. Lett., 2003, 83: 2665

[11]

JiangY., MengX. M., YiuW. C., LiuJ., DingJ. X., LeeC. S., LeeS. T.. J. Phys. Chem. B, 2004, 108: 2784

[12]

TournieE., MorhainC., NeuG., FaurieJ. P., TribouletR., NdapJ. O.. Appl. Phys. Lett., 1996, 68: 1356

[13]

GudaS., DepuyatJ. M., HaaseM. A., QiuJ., ChengH.. Appl. Phys. Lett., 1993, 63: 3107

[14]

NakamuraS.. MRS Bull, 1997, 22: 29

[15]

StJC.-H.. J. Cryst. Growth, 2000, 213: 267

[16]

PanZ. W., DaiZ. R., WangZ. L.. Appl. Phys. Lett., 2002, 80: 309

[17]

AdachiS., TaguchiT.. Phys. Rev. B, 1991, 43: 9569

[18]

ZapienJ. A., JiangY., MengX. M., ChenW., AuF. C. K., LifshitzY., LeeS. T.. Appl. Phys. Lett., 2004, 84: 1189

[19]

SarigiannisD., PeckJ. D., KioseoglouG., PetrouA., MountziarisT. J.. Appl. Phys. Lett., 2002, 80: 4024

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/