Modification of the diamond film electrode with photochemistry for phenol degradation

An Yun-ling , Chang Ming , Wen Gao-jie , Xu Meng , Qiu Chen

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 253 -255.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 253 -255. DOI: 10.1007/s11801-010-0022-7
Article

Modification of the diamond film electrode with photochemistry for phenol degradation

Author information +
History +
PDF

Abstract

The degradation of phenols has become urgent issues. In this paper, the diamond film electrode modified by photochemistry is chosen as the research object for phenol degradation. The boron-doped diamond films, which are modified and unmodified, are characterized by the X-ray photoelectron spectroscopy (XPS). Cyclic voltammograms are used to test the electrochemical window. It is found that the current value of tantalum/boron-doped diamond (Ta/BDD) electrode with amino modification increases two orders of magnitude in degrading the nitro-phenol, when the amino-modified rate is only 1.9%. The current value is enhanced from −4.0 × 10−4A-4.0 × 10−4 A to −4.0 × 10−2A-4.0 × 10−2A. In addition, in order to understand the excellent characteristics of Ta/BDD electrode modified by photochemistry for phenol degradation, the efficiency of degradation is also discussed.

Keywords

Cyclic Voltammograms / Diamond Film / Phenol Degradation / Electrochemical Window / Wide Electrochemical Window

Cite this article

Download citation ▾
An Yun-ling, Chang Ming, Wen Gao-jie, Xu Meng, Qiu Chen. Modification of the diamond film electrode with photochemistry for phenol degradation. Optoelectronics Letters, 2010, 6(4): 253-255 DOI:10.1007/s11801-010-0022-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DempseyE., DiamondD., CollierA.. Biosensors & Bioelectronics, 2004, 20: 367

[2]

Levy-ClementC., NdaoN. A., KattyA., BernardM., DeneuvilleA., ComninellisC., FujishimaA.. Diamond and Related Materials, 2003, 12: 606

[3]

FangN., JiaJ. P., ZhongD. J., WangY. L.. Environmental Pollution & Control, 2007, 29: 708

[4]

FerreiraN. G., SilvaL. L. G., CoratE. J., Trava-AiroldiV. J., IhaK.. Brazilian Journal of Physics, 1999, 29: 760

[5]

SirésI., BrillasE., CerisolaG., PanizzaM.. Journal of Electroanalytical Chemistry, 2008, 613: 151

[6]

CañizaresP., SáezC., LobatoJ., RodrigoM.. Journal of Chemical Technology & Biotechnology, 2005, 81: 352

[7]

IniestaJ., MichaudP. A., PanizzaM., CerisolaG., AldazA., ComninellisC.. Electrochemical Acta, 2001, 46: 3573

[8]

KatieW., WangW. J., BejanD. J.. Appl. Electrochem., 2006, 36: 227

[9]

GaoC. Y., ChangM., LiX. W.. Journal of Optoelectronics·Laser, 2009, 20: 483

[10]

CañizaresP., LobatoJ., PazR., RodrigoM. A., SáezC.. Water Research, 2005, 39: 2687

[11]

AndoT., NishitanigamoM., RawlesR. E., YamamotoK., KamoM., SatoY.. Diamond and Related Materials, 1996, 5: 1136

[12]

AngusJ. C., WangY., SunkaraM.. Annual Review of Materials Science, 1991, 21: 221

[13]

StrotherT., CaiW., ZhaoX. S., HamersR. J., SmithL. M.. Journal of the American Chemical Society, 2000, 122: 1205

[14]

SzuneritsS., JarnaC., CoffinierY., MarcusB., DelabougliseD., BoukherroubR.. Electrochemistry Communications, 2006, 8: 1185

[15]

ZhangG. J., SongK. S., NakamuraY., UenoT., FunatsuT., OhdomariI., KawaradaH.. Langmuir, 2006, 22: 3728

[16]

HovisJ. S., CoulterS. K., HamersR. J.. Journal of the American Chemical Society, 2000, 122: 732

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/