Modification of the diamond film electrode with photochemistry for phenol degradation

An Yun-ling, Chang Ming, Wen Gao-jie, Xu Meng, Qiu Chen

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 253-255.

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 253-255. DOI: 10.1007/s11801-010-0022-7
Article

Modification of the diamond film electrode with photochemistry for phenol degradation

Author information +
History +

Abstract

The degradation of phenols has become urgent issues. In this paper, the diamond film electrode modified by photochemistry is chosen as the research object for phenol degradation. The boron-doped diamond films, which are modified and unmodified, are characterized by the X-ray photoelectron spectroscopy (XPS). Cyclic voltammograms are used to test the electrochemical window. It is found that the current value of tantalum/boron-doped diamond (Ta/BDD) electrode with amino modification increases two orders of magnitude in degrading the nitro-phenol, when the amino-modified rate is only 1.9%. The current value is enhanced from −4.0 × 10−4A-4.0 × 10−4 A to −4.0 × 10−2A-4.0 × 10−2A. In addition, in order to understand the excellent characteristics of Ta/BDD electrode modified by photochemistry for phenol degradation, the efficiency of degradation is also discussed.

Keywords

Cyclic Voltammograms / Diamond Film / Phenol Degradation / Electrochemical Window / Wide Electrochemical Window

Cite this article

Download citation ▾
An Yun-ling, Chang Ming, Wen Gao-jie, Xu Meng, Qiu Chen. Modification of the diamond film electrode with photochemistry for phenol degradation. Optoelectronics Letters, 2010, 6(4): 253‒255 https://doi.org/10.1007/s11801-010-0022-7

References

[1]
DempseyE., DiamondD., CollierA.. Biosensors & Bioelectronics, 2004, 20: 367
CrossRef Google scholar
[2]
Levy-ClementC., NdaoN. A., KattyA., BernardM., DeneuvilleA., ComninellisC., FujishimaA.. Diamond and Related Materials, 2003, 12: 606
CrossRef Google scholar
[3]
FangN., JiaJ. P., ZhongD. J., WangY. L.. Environmental Pollution & Control, 2007, 29: 708
[4]
FerreiraN. G., SilvaL. L. G., CoratE. J., Trava-AiroldiV. J., IhaK.. Brazilian Journal of Physics, 1999, 29: 760
[5]
SirésI., BrillasE., CerisolaG., PanizzaM.. Journal of Electroanalytical Chemistry, 2008, 613: 151
CrossRef Google scholar
[6]
CañizaresP., SáezC., LobatoJ., RodrigoM.. Journal of Chemical Technology & Biotechnology, 2005, 81: 352
CrossRef Google scholar
[7]
IniestaJ., MichaudP. A., PanizzaM., CerisolaG., AldazA., ComninellisC.. Electrochemical Acta, 2001, 46: 3573
CrossRef Google scholar
[8]
KatieW., WangW. J., BejanD. J.. Appl. Electrochem., 2006, 36: 227
CrossRef Google scholar
[9]
GaoC. Y., ChangM., LiX. W.. Journal of Optoelectronics·Laser, 2009, 20: 483
[10]
CañizaresP., LobatoJ., PazR., RodrigoM. A., SáezC.. Water Research, 2005, 39: 2687
CrossRef Google scholar
[11]
AndoT., NishitanigamoM., RawlesR. E., YamamotoK., KamoM., SatoY.. Diamond and Related Materials, 1996, 5: 1136
CrossRef Google scholar
[12]
AngusJ. C., WangY., SunkaraM.. Annual Review of Materials Science, 1991, 21: 221
CrossRef Google scholar
[13]
StrotherT., CaiW., ZhaoX. S., HamersR. J., SmithL. M.. Journal of the American Chemical Society, 2000, 122: 1205
CrossRef Google scholar
[14]
SzuneritsS., JarnaC., CoffinierY., MarcusB., DelabougliseD., BoukherroubR.. Electrochemistry Communications, 2006, 8: 1185
CrossRef Google scholar
[15]
ZhangG. J., SongK. S., NakamuraY., UenoT., FunatsuT., OhdomariI., KawaradaH.. Langmuir, 2006, 22: 3728
CrossRef Google scholar
[16]
HovisJ. S., CoulterS. K., HamersR. J.. Journal of the American Chemical Society, 2000, 122: 732
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.50972105), and Tianjin Natural Science Foundation (No. 09JCZDJC16500).

Accesses

Citations

Detail

Sections
Recommended

/