Reflection z-scan for measuring the nonlinear refractive index of porous silicon

Mei Xiang, Zhen-hong Jia, Xiao-yi Lv

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 226-228.

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (3) : 226-228. DOI: 10.1007/s11801-010-0019-2
Article

Reflection z-scan for measuring the nonlinear refractive index of porous silicon

Author information +
History +

Abstract

An experimental investigation on the nonlinear refractive index of nanoporous silicon at wavelengths of 532 nm and 1064 nm is reported by the reflection z-scan (RZ-scan) method with picosecond pulses. The porous silicon (PS) does not need to be peeled from silicon substrate. The method uses a p-polarized beam with oblique incidence. The modification of the reflected beam intensity gives the information of the surface nonlinear refractive index. The index of porous silicon at 1064 nm is at the same order of magnitude as that obtained by the conventional transmission z-scan technique, and the measured absolute value of nonlinear refractive index n2 at 532 nm is two orders of magnitude higher than that at 1064 nm.

Keywords

Porous Silicon / Nonlinear Refractive Index / Picosecond Pulse / Nonlinear Refraction / Porous Silicon Layer

Cite this article

Download citation ▾
Mei Xiang, Zhen-hong Jia, Xiao-yi Lv. Reflection z-scan for measuring the nonlinear refractive index of porous silicon. Optoelectronics Letters, 2010, 6(3): 226‒228 https://doi.org/10.1007/s11801-010-0019-2

References

[1]
Lettieri aS., Fiore aO., Maddalena aP., NinnoD.. Optics Communications, 1999, 168: 383
CrossRef Google scholar
[2]
ApiratikulP., RossiA. M., MurphyT. E.. Optics Express, 2009, 17: 3396
CrossRef Google scholar
[3]
CullisA. G., CanhamL. H., CalcottP. D. J.. Appl. Phys. Rev., 1997, 82: 909
CrossRef Google scholar
[4]
BindraK. S.. Optics Communications, 2005, 246: 421
CrossRef Google scholar
[5]
LettieriS., MaddalenaP.. J. Appl. Phys., 2002, 91: 5564
CrossRef Google scholar
[6]
YuJ., LiuH., WangY., JiaW., FonsecaL. F., WeiszS. Z., RestoO.. J. Lumin., 1999, 81: 1
CrossRef Google scholar
[7]
PetrovD. V., GomesA. S. L., de Ara’ujoC. B.. Appl. Phys. Lett., 1994, 65: 1067
CrossRef Google scholar
[8]
BornM., WolfE.. Principles of Optics, 1959, London, Pergamon: 614
[9]
DinuM., QuochiF., GarciaH.. Appl. Phys. Lett., 2003, 82: 2954
CrossRef Google scholar
[10]
ChengP., ZhuH., BaiY., ZhangY., HeT., MoY.. Optics Communications, 2007, 270: 391
CrossRef Google scholar
[11]
ChoiY., ParkJ.-H., KimM. R., JheW., Ku RheeB.. Appl. Phys. Lett., 2001, 78: 856
CrossRef Google scholar
[12]
Zhi-binC., Jian-rongG., Hua-qingD.. Journal of Optoelectronics · Laser, 2008, 19: 989
[13]
MartinelliM., BianS., LeiteJ. R., HorowiczR. J.. Appl. Phys. Lett., 1998, 72: 1427
CrossRef Google scholar
[14]
Cai-fengW., Qing-shanL., Shao-lanL., BoH., Wei-bingL.. Journal of Optoelectronics · Laser, 2009, 20: 359

This work has been supported by the National Natural Science Foundation of China (No. 60748001), the Program for New Century Excellent Talents in University of China (No. NCET-05-0897), and the Scientific Research Project for Universities in Xinjiang (No. XJEDU2006I10).

Accesses

Citations

Detail

Sections
Recommended

/