Design of novel power splitters by directional coupling between photonic crystal waveguides

Yong-feng Gao, Jun Zhou, Ming Zhou, Ming-yang Chen, Wei Zhang

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (6) : 417-420.

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (6) : 417-420. DOI: 10.1007/s11801-010-0017-4
Article

Design of novel power splitters by directional coupling between photonic crystal waveguides

Author information +
History +

Abstract

The design of a novel photonic crystal waveguide power splitter is presented. The proposed power splitter has three output ports, the coupling among three parallel photonic crystal waveguides can be considered as a multimode interference (MMI), and the positions of output waveguides are determined by those of twofold images which are formed by the self-imaging effect of multimode interference. The transmission characteristics of the splitter are investigated by using the finite-difference time domain (FDTD) and the plane wave expansion method. The output optical power in each port can be controlled by adjusting the radius of the dielectric rods in the coupling region, and the coupling effect among output ports is decreased by using the T-shaped output port. The results indicate that 1× 1, 1×2 and 1×3 type power splitters can be realized when the normalized radius of dielectric rods in the coupling region is 0.130, 0.180, 0.152 or 0.221, respectively.

Keywords

Photonic Crystal / Output Port / Coupling Region / Power Splitter / Output Waveguide

Cite this article

Download citation ▾
Yong-feng Gao, Jun Zhou, Ming Zhou, Ming-yang Chen, Wei Zhang. Design of novel power splitters by directional coupling between photonic crystal waveguides. Optoelectronics Letters, 2010, 6(6): 417‒420 https://doi.org/10.1007/s11801-010-0017-4

References

[1]
YablonovitchE.. Phys. Rev. Lett., 1987, 58: 2059
CrossRef Google scholar
[2]
JohnsS.. Phys. Rev. Lett., 1987, 58: 2486
CrossRef Google scholar
[3]
Ou YangZ.-b., YangL.-l., XuG.-w., XuanS.-c., LiJ.-z.. Journal of Optoelectronics · Laser, 2005, 16: 63
[4]
MekisA., ChenJ. C., KurlandI., FanS.-h., VilleneuveP. R., JoannopoulosJ. D.. Phys. Rev. Lett., 1996, 77: 3787
CrossRef Google scholar
[5]
GhaffariA., MonifiF., DjavidM., AbrishamianM. S.. Opt. Commun., 2008, 281: 5929
CrossRef Google scholar
[6]
ZiolkowskiR. W., TanakaM.. Quan. Electr., 1999, 31: 843
CrossRef Google scholar
[7]
LiuH., CaiX.-b.. Optoelectron. Lett., 2008, 4: 339
CrossRef Google scholar
[8]
SoldanoL. B., PenningsE. C. M.. Lightwave Technol., 1995, 13: 165
CrossRef Google scholar
[9]
KimH. J., ParkI., OB. H., ParkS. G., LeeE. H., LeeS. G.. Opt. Express, 2004, 12: 5625
CrossRef Google scholar
[10]
LocatelliA., ModottoD., PaloschiD., De AngelisC.. Opt. Commun., 2004, 237: 97
CrossRef Google scholar
[11]
ChenH.-b., XuY., HeJ.-l., HongZ.. Opt. Commun., 2009, 282: 3626
CrossRef Google scholar
[12]
ZhangW.-f., LiuJ.-h., ZhaoW.. Journal of Optoelectronics Laser, 2009, 20: 148
[13]
JohnsonS. G., JoannopoulosJ. D.. Opt. Express, 2001, 8: 173
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/