Design of novel power splitters by directional coupling between photonic crystal waveguides

Yong-feng Gao , Jun Zhou , Ming Zhou , Ming-yang Chen , Wei Zhang

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (6) : 417 -420.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (6) : 417 -420. DOI: 10.1007/s11801-010-0017-4
Article

Design of novel power splitters by directional coupling between photonic crystal waveguides

Author information +
History +
PDF

Abstract

The design of a novel photonic crystal waveguide power splitter is presented. The proposed power splitter has three output ports, the coupling among three parallel photonic crystal waveguides can be considered as a multimode interference (MMI), and the positions of output waveguides are determined by those of twofold images which are formed by the self-imaging effect of multimode interference. The transmission characteristics of the splitter are investigated by using the finite-difference time domain (FDTD) and the plane wave expansion method. The output optical power in each port can be controlled by adjusting the radius of the dielectric rods in the coupling region, and the coupling effect among output ports is decreased by using the T-shaped output port. The results indicate that 1× 1, 1×2 and 1×3 type power splitters can be realized when the normalized radius of dielectric rods in the coupling region is 0.130, 0.180, 0.152 or 0.221, respectively.

Keywords

Photonic Crystal / Output Port / Coupling Region / Power Splitter / Output Waveguide

Cite this article

Download citation ▾
Yong-feng Gao, Jun Zhou, Ming Zhou, Ming-yang Chen, Wei Zhang. Design of novel power splitters by directional coupling between photonic crystal waveguides. Optoelectronics Letters, 2010, 6(6): 417-420 DOI:10.1007/s11801-010-0017-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YablonovitchE.. Phys. Rev. Lett., 1987, 58: 2059

[2]

JohnsS.. Phys. Rev. Lett., 1987, 58: 2486

[3]

Ou YangZ.-b., YangL.-l., XuG.-w., XuanS.-c., LiJ.-z.. Journal of Optoelectronics · Laser, 2005, 16: 63

[4]

MekisA., ChenJ. C., KurlandI., FanS.-h., VilleneuveP. R., JoannopoulosJ. D.. Phys. Rev. Lett., 1996, 77: 3787

[5]

GhaffariA., MonifiF., DjavidM., AbrishamianM. S.. Opt. Commun., 2008, 281: 5929

[6]

ZiolkowskiR. W., TanakaM.. Quan. Electr., 1999, 31: 843

[7]

LiuH., CaiX.-b.. Optoelectron. Lett., 2008, 4: 339

[8]

SoldanoL. B., PenningsE. C. M.. Lightwave Technol., 1995, 13: 165

[9]

KimH. J., ParkI., OB. H., ParkS. G., LeeE. H., LeeS. G.. Opt. Express, 2004, 12: 5625

[10]

LocatelliA., ModottoD., PaloschiD., De AngelisC.. Opt. Commun., 2004, 237: 97

[11]

ChenH.-b., XuY., HeJ.-l., HongZ.. Opt. Commun., 2009, 282: 3626

[12]

ZhangW.-f., LiuJ.-h., ZhaoW.. Journal of Optoelectronics Laser, 2009, 20: 148

[13]

JohnsonS. G., JoannopoulosJ. D.. Opt. Express, 2001, 8: 173

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/