Analysis of mode characteristics for hexagonal resonator lasers

Wen-guang Wu , Jia-xian Wang , Yong-zhen Huang

Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 256 -260.

PDF
Optoelectronics Letters ›› 2010, Vol. 6 ›› Issue (4) : 256 -260. DOI: 10.1007/s11801-010-0009-4
Article

Analysis of mode characteristics for hexagonal resonator lasers

Author information +
History +
PDF

Abstract

Mode characteristics of hexagonal resonators are numerically simulated by the two-dimensional (2-D) finite-difference time-domain (FDTD) technique. For the hexagonal resonator with the side length of 3 μm and the refractive index of 3.2, the mode quality (Q) factors decrease from 104 to 102 as the resonant wavelength increases from 1.1 to 3.2 μm. The modes have a relatively high Q factor as their even and odd states have different mode wavelengths and different Q factors, i.e., they are accidentally degenerate modes. The azimuthal mode numbers obtained from mode field distribution for the accidentally degenerate modes satisfy the mode number relation derived from the symmetry characteristics for the split of double-degenerate modes. Furthermore, the numerical results indicate that an output waveguide parallel to one of the sides is the better scheme for directional emission. For the hexagonal resonator with 3 m side length and 0.3 μm wide output waveguide, the Q factor of 5.05×103 and output efficiency of 33% are obtained at the mode wavelength of 1.29 μm.

Keywords

Perfect Matched Layer / Output Efficiency / Output Waveguide / Degenerate Mode / Azimuthal Number

Cite this article

Download citation ▾
Wen-guang Wu, Jia-xian Wang, Yong-zhen Huang. Analysis of mode characteristics for hexagonal resonator lasers. Optoelectronics Letters, 2010, 6(4): 256-260 DOI:10.1007/s11801-010-0009-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McCallS. L., LeviA. F. J., SlusherR. E., PeartonS. J., LoganR. A.. Appl. Phys. Lett., 1992, 60: 289

[2]

ChernG. D., TureciH. E., StoneA. D., ChangaR. K.. Appl. Phys. Lett., 2003, 83: 1710

[3]

KimS. K., KimS. H., KimG. H., ParkH. G., ShinD. J., LeeY. H.. Appl. Phys. Lett., 2004, 84: 861

[4]

LiC., MaN., PoonA. W.. Appl. Opt. Lett., 2004, 29: 471

[5]

LuQ.-y., ChenX.-h., GuoW.-h., YuL.-j., HuangY.-Z., WangJ., LuoY.. IEEE Photon. Technol. Lett., 2004, 16: 359

[6]

HuangY.-z., LuQ.-y., GuoW.-h., YuL.. IEEE Proc.-Optoelectron., 2004, 151: 202

[7]

HuangY.-z., ChenQ., GuoW.-h., LuQ., YuL.-j.. IEEE J. Sel. Top. Quantum Electron., 2006, 12: 59

[8]

LiJ., HuangY.-z., XiaoJ.-l., DuY., FanZ.-c.. Journal of Optoelectronics Laser, 2009, 20: 1278

[9]

YangY.-d., HuangY.-z.. IEEE J. Quantum Electron., 2007, 43: 497

[10]

HuangY.-z., HuY.-h., ChenQ., WangS.-J., DuY., FanZ.-c.. IEEE Photon. Technol. Lett., 2007, 19: 963

[11]

HuangY.-z., CheK.-j., YangY.-d., WangS.-j., DuY., FanZ.-c.. Opt. Lett., 2008, 33: 2170

[12]

AndoS., KobaN., AndoH.. J. Appl. Phys., 1995, 34: L4

[13]

WiersigJ.. Phys. Rev. A, 2003, 67: 023807

[14]

TungF. K. L., MaN., PoonA. W.. Proc. SPIE, 2003, 5116: 488

[15]

YangY.-d., HuangY.-z.. Phys. Rev. A, 2007, 76: 023822

[16]

BerengerJ. P.. J. Computional Phys., 1994, 114: 185

[17]

GuoW.-h., LiW.-j., HuangY.-z.. IEEE Microwave Wireless Compon. Lett., 2001, 11: 223

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/