Fluorescent emission characteristics of polycrystalline diamond film prepared by direct current jet CVD

Lan-fang Wang , Xi-ming Chen , Zhong-peng Zhang , Jin-yan Zhuang , Lan Li

Optoelectronics Letters ›› 2009, Vol. 5 ›› Issue (5) : 356 -358.

PDF
Optoelectronics Letters ›› 2009, Vol. 5 ›› Issue (5) : 356 -358. DOI: 10.1007/s11801-009-9160-1
Article

Fluorescent emission characteristics of polycrystalline diamond film prepared by direct current jet CVD

Author information +
History +
PDF

Abstract

The free-standing diamond films are deposited on molybdenum substrate by direct current jet chemical vapor deposition (DCJCVD). X-ray diffraction, Raman spectroscopy and cathodoluminescence (CL) measurement are used to investigate the films structure and defects related to electron transition properties of the diamond films. The X-ray diffraction spectrum reveals that the diamond films have the polycrystalline cubic structure with diffraction peaks at 43.88° and 75.24°. A sharp peak at 1331.8 cm−1 and a broad band at about 1250–1550 cm−1 from Raman spectrum are attributed to diamond phase and sp2-type carbons, respectively. Two emission peaks at 440 nm and 530 nm, associated with dislocation defects and nitrogen and vacancy complexes respectively, are observed in cathodoluminescence spectrum. In addition, in order to understand both emission processes, a simple energy level scheme is suggested.

Keywords

Diamond Film / Synthetic Diamond / Vacancy Complex / Cathodoluminescence Spectrum / Dislocation Defect

Cite this article

Download citation ▾
Lan-fang Wang, Xi-ming Chen, Zhong-peng Zhang, Jin-yan Zhuang, Lan Li. Fluorescent emission characteristics of polycrystalline diamond film prepared by direct current jet CVD. Optoelectronics Letters, 2009, 5(5): 356-358 DOI:10.1007/s11801-009-9160-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiao-bingLIU, Xiao-pengJIA, Hong-anMA, WeiHAN, Xin-kaiGUO, Hong-shengJIA. Chin. Phys. Lett., 2009, 26: 038102

[2]

SeoJ. K., LeeJ. H., ParkJ. W.. Solid State Phenomena, 2007, 124–126: 467

[3]

LiM.-j., YangB.-h., SunD.-z., JinZ.-s.. Optoelectronics Letters, 2008, 4: 0433

[4]

RobinsL. H., CookL. P., FarabaughE. N., FeldmanA.. Phys. Rev. B., 1989, 39: 13367

[5]

KawaradaH., YokotaY., MoriY., NishimuraK., HirakiA.. J. Appl. Phys., 1990, 67: 983

[6]

WatanabeH., HayashiK., TakeuchiD., YamanakaS., OkushiH., KajimuraaK., SekiguchiT.. Appl. Phys. Lett., 1998, 73: 981

[7]

YacobiB. G., BadzianA. R., BadzianT.. J. Appl. Phys., 1991, 69: 1643

[8]

TerajiT., HamadaM., WadaH., YamamotoM., ArimaK., ItoT.. Diamond Relat. Mater., 2005, 14: 255

[9]

PandeyM., D’CunhaR., TyagiA. K.. J. Alloys Compd., 2002, 333: 260

[10]

ChowdhuryS., LaugierS. M. T., HenryJ.. Int. J. Refract. Met. Hard Mater., 2007, 25: 39

[11]

KnightD. S., WhiteW. B.. J. Mater. Res., 1989, 4: 385

[12]

SpearK. E.. J. Am. Ceram. Soc., 1989, 72: 171

[13]

LiuY.-y., ZhangQ.-y., ElizabethB. G.. Chin. Phys. Lett., 2007, 24: 3502

[14]

TerajiT., YoshizakiS., MitaniS., WatanabeT., ItoT.. J. Appl. Phys., 2004, 96: 7300

[15]

TerajiT., MitaniS., WangC.-l., ItoT.. J. Cryst. Growth, 2002, 235: 287

[16]

GrahamR. J., MoustakasT. D., DiskoM. M.. J. Appl. Phys., 1991, 69: 3212

[17]

DeanP. J.. Phys. Rev., 1965, 139: A588

[18]

BuhaenkoD. S., SouthworthP., JenkinsC.E., EllisP. J., StonerB. R.. Diamond Relat. Mater., 1994, 3: 926

[19]

MarinelliM., HattaA., ItoT., HirakiA., NishinoT.. Appl. Phys. Lett., 1996, 68: 1631

[20]

SouwE. K., MeilunasR. J., SzelesC., RavindraN. M., TongF. M.. Diamond Relat. Mater., 1997, 6: 1157

[21]

MainwoodA.. Phys. Rev. B, 1994, 49: 7934

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/