Fluorescent emission characteristics of polycrystalline diamond film prepared by direct current jet CVD

Lan-fang Wang, Xi-ming Chen, Zhong-peng Zhang, Jin-yan Zhuang, Lan Li

Optoelectronics Letters ›› 2009, Vol. 5 ›› Issue (5) : 356-358.

Optoelectronics Letters ›› 2009, Vol. 5 ›› Issue (5) : 356-358. DOI: 10.1007/s11801-009-9160-1
Article

Fluorescent emission characteristics of polycrystalline diamond film prepared by direct current jet CVD

Author information +
History +

Abstract

The free-standing diamond films are deposited on molybdenum substrate by direct current jet chemical vapor deposition (DCJCVD). X-ray diffraction, Raman spectroscopy and cathodoluminescence (CL) measurement are used to investigate the films structure and defects related to electron transition properties of the diamond films. The X-ray diffraction spectrum reveals that the diamond films have the polycrystalline cubic structure with diffraction peaks at 43.88° and 75.24°. A sharp peak at 1331.8 cm−1 and a broad band at about 1250–1550 cm−1 from Raman spectrum are attributed to diamond phase and sp2-type carbons, respectively. Two emission peaks at 440 nm and 530 nm, associated with dislocation defects and nitrogen and vacancy complexes respectively, are observed in cathodoluminescence spectrum. In addition, in order to understand both emission processes, a simple energy level scheme is suggested.

Keywords

Diamond Film / Synthetic Diamond / Vacancy Complex / Cathodoluminescence Spectrum / Dislocation Defect

Cite this article

Download citation ▾
Lan-fang Wang, Xi-ming Chen, Zhong-peng Zhang, Jin-yan Zhuang, Lan Li. Fluorescent emission characteristics of polycrystalline diamond film prepared by direct current jet CVD. Optoelectronics Letters, 2009, 5(5): 356‒358 https://doi.org/10.1007/s11801-009-9160-1

References

[1]
Xiao-bingLIU, Xiao-pengJIA, Hong-anMA, WeiHAN, Xin-kaiGUO, Hong-shengJIA. Chin. Phys. Lett., 2009, 26: 038102
[2]
SeoJ. K., LeeJ. H., ParkJ. W.. Solid State Phenomena, 2007, 124–126: 467
CrossRef Google scholar
[3]
LiM.-j., YangB.-h., SunD.-z., JinZ.-s.. Optoelectronics Letters, 2008, 4: 0433
CrossRef Google scholar
[4]
RobinsL. H., CookL. P., FarabaughE. N., FeldmanA.. Phys. Rev. B., 1989, 39: 13367
[5]
KawaradaH., YokotaY., MoriY., NishimuraK., HirakiA.. J. Appl. Phys., 1990, 67: 983
[6]
WatanabeH., HayashiK., TakeuchiD., YamanakaS., OkushiH., KajimuraaK., SekiguchiT.. Appl. Phys. Lett., 1998, 73: 981
CrossRef Google scholar
[7]
YacobiB. G., BadzianA. R., BadzianT.. J. Appl. Phys., 1991, 69: 1643
CrossRef Google scholar
[8]
TerajiT., HamadaM., WadaH., YamamotoM., ArimaK., ItoT.. Diamond Relat. Mater., 2005, 14: 255
CrossRef Google scholar
[9]
PandeyM., D’CunhaR., TyagiA. K.. J. Alloys Compd., 2002, 333: 260
CrossRef Google scholar
[10]
ChowdhuryS., LaugierS. M. T., HenryJ.. Int. J. Refract. Met. Hard Mater., 2007, 25: 39
CrossRef Google scholar
[11]
KnightD. S., WhiteW. B.. J. Mater. Res., 1989, 4: 385
CrossRef Google scholar
[12]
SpearK. E.. J. Am. Ceram. Soc., 1989, 72: 171
CrossRef Google scholar
[13]
LiuY.-y., ZhangQ.-y., ElizabethB. G.. Chin. Phys. Lett., 2007, 24: 3502
CrossRef Google scholar
[14]
TerajiT., YoshizakiS., MitaniS., WatanabeT., ItoT.. J. Appl. Phys., 2004, 96: 7300
CrossRef Google scholar
[15]
TerajiT., MitaniS., WangC.-l., ItoT.. J. Cryst. Growth, 2002, 235: 287
CrossRef Google scholar
[16]
GrahamR. J., MoustakasT. D., DiskoM. M.. J. Appl. Phys., 1991, 69: 3212
CrossRef Google scholar
[17]
DeanP. J.. Phys. Rev., 1965, 139: A588
CrossRef Google scholar
[18]
BuhaenkoD. S., SouthworthP., JenkinsC.E., EllisP. J., StonerB. R.. Diamond Relat. Mater., 1994, 3: 926
CrossRef Google scholar
[19]
MarinelliM., HattaA., ItoT., HirakiA., NishinoT.. Appl. Phys. Lett., 1996, 68: 1631
CrossRef Google scholar
[20]
SouwE. K., MeilunasR. J., SzelesC., RavindraN. M., TongF. M.. Diamond Relat. Mater., 1997, 6: 1157
CrossRef Google scholar
[21]
MainwoodA.. Phys. Rev. B, 1994, 49: 7934
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/