Optical lattice transformation from 2D to 3D by holographic interference

Xia Wang, Hai-bo Li, Zi-xia Wang

Optoelectronics Letters ›› 2010, Vol. 5 ›› Issue (6) : 434-436.

Optoelectronics Letters ›› 2010, Vol. 5 ›› Issue (6) : 434-436. DOI: 10.1007/s11801-009-9087-6
Article

Optical lattice transformation from 2D to 3D by holographic interference

Author information +
History +

Abstract

The optical lattice transformation from 2 dimensions (2D) to 3 dimensions (3D) by holographic interference is studied. The 2D optical lattices can be formed by 3 noncoplanar beams, and in this paper by adding another three beams, a 3D interference lattice structure is obtained. The added beams and the original ones are mirror symmetry (by using a reflective mirror). The simulation results show that the lattices become ellipsoids from 2D columns, which are periodic in the z direction. The calculations and numerical simulations provide a useful theoretical guide for fabricating 3D photonic crystals (PCs).

Keywords

Interference Pattern / Photonic Crystal Structure / Modeling Simulation Result / Intensity Cutoff / Colloidal Microsphere

Cite this article

Download citation ▾
Xia Wang, Hai-bo Li, Zi-xia Wang. Optical lattice transformation from 2D to 3D by holographic interference. Optoelectronics Letters, 2010, 5(6): 434‒436 https://doi.org/10.1007/s11801-009-9087-6

References

[1]
YablonovitchE.. Phys. Rev. Lett., 1987, 58: 2059
CrossRef Google scholar
[2]
JohnS.. Phys. Rev. Lett., 1987, 58: 2486
CrossRef Google scholar
[3]
KnightJ. C., BirksT. A., RussellP. S. J.. Opt. Lett., 1996, 21: 1547
CrossRef Google scholar
[4]
JoannopoulosJ. D., VilleneuveP. R., FanS.. Nature, 1997, 386: 143
CrossRef Google scholar
[5]
FanS. H., VilleneuveP. R., JoannopoulosJ. D.. Phys. Rev. Lett., 1997, 78: 3294
CrossRef Google scholar
[6]
GuptaS., TuttleG., SigalasM.. Appl. Phys. Lett., 1997, 71: 2412
CrossRef Google scholar
[7]
KaiG. Y., DongX. Y.. Journal of Optoelectronics · Laser, 2005, 16: 1007
[8]
WijnhovenJ. E. G. J., VosW. L.. Science, 1998, 281: 802
CrossRef Google scholar
[9]
ToaderO., JohnS.. Science, 2001, 292: 1133
CrossRef Google scholar
[10]
LinS. Y., FlemingJ. G., HetheringtonD. L., SmithB. K., BiswasR., HoK. M., SigalasM. M., ZubrzyckiW., KurtzS. R., BurJ.. Nature, 1998, 394: 251
CrossRef Google scholar
[11]
DeubelM., Von FreymannG., WegenerM., PereiraS., BuschK., SoukoulisC. M.. Nat. Mater., 2004, 3: 444
CrossRef Google scholar
[12]
CampbellM., SharpD. N., HarrisonM. T., DenningR. G., TurberfieldA. J.. Nature, 2000, 404: 53
CrossRef Google scholar
[13]
WangX., XuJ. F., SuH. M., ZengZ. H., ChenY. L., WangH. Z., PangY. K., TamW. Y.. Appl. Phys. Lett., 2003, 82: 2212
CrossRef Google scholar
[14]
WangX., NgC. Y., TamW. Y., ChanC. T., ShengP.. Adv. Mater., 2003, 15: 1526
CrossRef Google scholar
[15]
WangX., XuJ., LeeJ. C. W., PangY. K., TamW. Y., ChanC. T., ShengP.. Appl. Phys. Lett., 2006, 88: 051901
CrossRef Google scholar
[16]
ZhangS.-s., WangQ.-p., ZhangX.-y.. Journal of Optoelectronics· Laser, 2008, 19: 640
[17]
WangX., SuH., ZhangL., HeY., ZhengX., WangH.. Applied Optics, 2001, 40: 5588
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/