All-optical switching in 3,3′-diethyl-2,2′-thiatricarbocyanine Iodide dye molecules

Parag Sharma , Sukhdev Roy

Optoelectronics Letters ›› 2009, Vol. 5 ›› Issue (4) : 251 -255.

PDF
Optoelectronics Letters ›› 2009, Vol. 5 ›› Issue (4) : 251 -255. DOI: 10.1007/s11801-009-9043-5
Article

All-optical switching in 3,3′-diethyl-2,2′-thiatricarbocyanine Iodide dye molecules

Author information +
History +
PDF

Abstract

All-optical switching has been theoretically analyzed in the 3,3′-diethyl-2,2′-thiatricarbocyanine iodide (DTTCI) carbocyanine dye that exhibits large excited-state absorption to achieve high contrast and fast switching. Switching has been analyzed both ns and ps pump pulse widths. It is shown that there is an optimum value of concentration for given peak pump intensity at which maximum modulation can be achieved. We can get 93.84% modulation of transmission of a CW probe laser beam at 532 nm at peak pumping intensity of 500 kW/cm2 at 763 nm, with Δt=1 ns and concentration of 80 μM in alcohol, resulting in switch-off and on time of 2 ns and 8 ns, respectively. The results have been also used to design all-optical NOT and the universal NOR and NAND logic gates with multiple pump laser pulses.

Keywords

Probe Beam / Pump Beam / Input Pulse / Switching Characteristic / Ground State Absorption

Cite this article

Download citation ▾
Parag Sharma, Sukhdev Roy. All-optical switching in 3,3′-diethyl-2,2′-thiatricarbocyanine Iodide dye molecules. Optoelectronics Letters, 2009, 5(4): 251-255 DOI:10.1007/s11801-009-9043-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GustD., MooreT. A., MooreA. L.. Chem. Commun., 2006, 11: 1169

[2]

RaymoF.M.. Adv. Mater., 2002, 14: 401

[3]

MarderS. R.. Chem. Commun., 2006, 2: 131

[4]

WuS., YaoS., LuoD., WangH.. J. Mater. Sci., 2003, 38: 401

[5]

WuS., LuM., SheW., YanK., HuangZ.. Mater. Chem. Phys., 2004, 83: 29

[6]

ZhangG., WangH., YuY., XiongF., TangG., ChenW.. Appl. Phys. B: Lasers Opt, 2003, 76: 677

[7]

LuoY., SheW., WuS., ZengF., YaoS.. Applied Physics B: Lasers and Optics., 2005, 80: 77

[8]

AbdeldayemH., FrazierD.O., PaleyM.S.. Appl. Phys. Lett., 2003, 82: 1120

[9]

LiC., ZhangL., YangM., WangH., WangY.. Phys. Rev. A, 1994, 49: 1149

[10]

HenariF.Z., CazziniK.H., WeldonD.N., BlauW.J.. Appl. Phys. Lett., 1996, 68: 619

[11]

HenariF.Z.. J. Opt. A: Pure Appl. Opt., 2001, 3: 188

[12]

SinghC.P., RoyS.. Opt. Engg., 2004, 43: 426

[13]

SinghC.P., KulshresthaK., RoyS.. Optik, 2006, 117: 499

[14]

RoyS., KulshresthaK.. IEEE Trans. Nanobiosci, 2006, 5: 281

[15]

RoyS., KikukawaT., SharmaP., KamoN.. IEEE Trans. Nanobiosci, 2006, 5: 178

[16]

OulianovD.A., DvornikovA.S., RentzepisP.M.. Opt. Commun., 2002, 205: 427

[17]

AdriaensenL., VangaeverF., GijbelsR.. Appl. Surf. Sci., 2004, 231: 348

[18]

A.R. Tameev, A.V. Vannikov and H.F.M. Schoo, Thin Solid Films, (2004), 109.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/