Influence of PEDOT:PSS buffer layer on the performance of organic photocoupler

Zhong-qiang Wang, Xiao-ming Wu, Na Jing, Qing-chuan Hou, Zi-yang Hu, Xiao-man Cheng, Yu-lin Hua, Jun Wei, Shou-gen Yin

Optoelectronics Letters ›› 2009, Vol. 5 ›› Issue (3) : 173-176.

Optoelectronics Letters ›› 2009, Vol. 5 ›› Issue (3) : 173-176. DOI: 10.1007/s11801-009-9031-9
Article

Influence of PEDOT:PSS buffer layer on the performance of organic photocoupler

Author information +
History +

Abstract

We have fabricated an organic photocoupler with organic light-emitting diodes (OLEDs) with 520 nm emissive wavelength as the input light source and a photodiode (PD) based on poly(3-hexylthiophene) (P3HT):1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C61 (PCBM) as the detector. The influences of buffer layer (PEDOT:PSS) on output current (Iout), current transfer ratio (CTR) and time response characteristics of the photocoupler device were studied. Through our experiments, It is found that the output current linearly increases with the input current, the max output current and CTR of the devices with PEDOT:PSS buffer layer are 2 times and 7 times than that of the devices without buffer layer respectively, which show that the existence of buffer layer can enhance the output photocurrent efficiently. Moreover, the existence of PEDOT:PSS eliminates the time delay of the devices.

Keywords

Buffer Layer / Active Layer / High Occupied Molecular Orbital / Output Current / Input Current

Cite this article

Download citation ▾
Zhong-qiang Wang, Xiao-ming Wu, Na Jing, Qing-chuan Hou, Zi-yang Hu, Xiao-man Cheng, Yu-lin Hua, Jun Wei, Shou-gen Yin. Influence of PEDOT:PSS buffer layer on the performance of organic photocoupler. Optoelectronics Letters, 2009, 5(3): 173‒176 https://doi.org/10.1007/s11801-009-9031-9

References

[1]
HeegerA. J.. Angew. Semiconducting and Metallic Polymers: Chem. Int. Ed, 2001, 40: 2591
CrossRef Google scholar
[2]
PadingerF., RittbergerR. S., SariciftciN. S.. Adv. Funct. Mater., 2003, 13: 85
CrossRef Google scholar
[3]
SpanggaardH., KrebsF. C.. Sol. Energy Mater. Sol. Cells, 2004, 83: 125
CrossRef Google scholar
[4]
S.E. Shaheen, D.S. Ginley, G.E. Jabbour (Eds.), Special Issue: Organic-based Photovoltaics, MRS Bull, 2005.
[5]
TangC. W., VanslykeS.A.. Appl. Phys. Lett., 1987, 51: 9135
[6]
DongG. F., HuY., JiangC. G.. Appl. Phys. Lett., 2006, 88: 051
[7]
GaoZ.-x., HaoY.-y., MaC.. Journal of Optoelectronics · Laser, 2008, 19: 152
[8]
WangY., HuaY. L., WuX. M.. Organic Electronics, 2008, 9: 692
CrossRef Google scholar
[9]
KimJ. Y., LeeK., CoatesN. E.. Science, 2007, 317: 222
CrossRef Google scholar
[10]
TietzeU., SchenkC., SchmidE.. Electronic Circuits: Design and Application, 1991, Berlin, Springer, 99
[11]
GageS., EvansD., HodappM.. Electronic Circuits: Design and Application, 1977, New York, McGraw-Hill
[12]
YaoY., ChenHsiang-Yu, HuangJ. S.. Appl. Phys. Lett., 2007, 90: 053509
[13]
WangY., HuaY. L., WuX.M.. Appl. Phys. Lett., 2008, 92: 123
[14]
WangY., HuaY. L., WuX. M.. Organic Electronics., 2008, 9: 273
CrossRef Google scholar
[15]
WangY., HuaY. L., WuX. M.. Appl. Phys. Lett., 2008, 93: 113
[16]
ParkinsonP., Lloyd-HughesJ., JohnstonM. B.. Phys. Rev. B, 2008, 78: 115321
[17]
CunninghamP. D., HaydenL. M.. J. Phys. Chem. C, 2008, 112: 7928
CrossRef Google scholar
[18]
YuG., GaoJ., HummelenJ. C., WudlF.. Science, 1995, 270: 1789
CrossRef Google scholar
[19]
Matthew T. Lloyd, Yee-Fun Lim, and George G. Malliaras, Appl. Phys. Lett., 92 (2008), 143308.
[20]
SaragiT. P.I., PudzichR., Fuhrmann-LiekerT.. Optical Materials, 2007, 29: 879
CrossRef Google scholar
[21]
MonestierF., SimonJ.-J., TorchioP.. Solar Energy Materials & Solar Cells., 2007, 91: 405
CrossRef Google scholar
[22]
KhodabakhshS., SandersonB. M., NelsonJ.. Adv. Funct. Mater., 2006, 16: 95
CrossRef Google scholar
[23]
VandewalK., GorisL., HaeldermansI.. Thin Solid Films, 2008, 516: 7135
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/