Effects of conical nozzle configuration on impulse coupling coefficient in repetitively-pulsed laser propulsion

Zheng-rui Cao , Yan-ji Hong , Ming Wen

Optoelectronics Letters ›› 2009, Vol. 5 ›› Issue (3) : 190 -193.

PDF
Optoelectronics Letters ›› 2009, Vol. 5 ›› Issue (3) : 190 -193. DOI: 10.1007/s11801-009-8213-9
Article

Effects of conical nozzle configuration on impulse coupling coefficient in repetitively-pulsed laser propulsion

Author information +
History +
PDF

Abstract

A dimensionless factor was introduced to deduce the analytic expression of impulse coupling coefficient for conical nozzles in the case of spherical symmetry, and a high precision impact pendulum system was used to measure impulse coupling coefficients of 15 conical nozzles with different cone angles and lengths. The expression was corrected according to experimental values. The results indicate that: 1) impulse coupling coefficient increases firstly and then decreases with augment of dimensionless length when cone angle is fixed; 2) impulse coupling coefficient decreases monotonously with augment of cone angle when dimensionless length is fixed; 3) it is of great importance for improving impulse coupling coefficient to increase the rate of laser energy deposition.

Keywords

Shock Wave / Cone Angle / Blast Wave / Conical Nozzle / Dimensionless Length

Cite this article

Download citation ▾
Zheng-rui Cao, Yan-ji Hong, Ming Wen. Effects of conical nozzle configuration on impulse coupling coefficient in repetitively-pulsed laser propulsion. Optoelectronics Letters, 2009, 5(3): 190-193 DOI:10.1007/s11801-009-8213-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L N Myrabo, D G Messitt, and F B Mead, AIAA Paper, (1998), 98.

[2]

CuiC. Y., HongY. J., HeG. Q., LiQ., CaoZ. R.. High Power Laser and Particle Beams, 2006, 18: 194

[3]

CuiC. Y., HongY. J., WangJ., HeG. Q.. Chinese Journal of Lasers, 2006, 33: 739

[4]

WenM., HongY. J., YeJ. F., WangG. Y., CuiC. Y.. Journal of Optoelectronics · Laser, 2007, 18: 1104

[5]

GongP., TangZ. P.. Explosion and Shock Waves, 2003, 23: 501

[6]

TangZ. P., GongP., HuX. J., CaiJ., TanR. Q., LuY.. Acta Aeronautica et Astronautica Sinica, 2005, 26: 13

[7]

P Gong, and Z P Tang, Second International Symposium on Beamed Energy Propulsion, 2004, 31.

[8]

SedovL. I.. Similarity and Dimension Methods in Mechanics, 1982, Beijing, Science Press, 235

[9]

Zel’dovichY. B., RaizerY. P.. Physics of Shock Waves and High-temperature Hydrodynamics Phenomena, 1980, Beijing, Science Press, 97

[10]

WenM., HongY. J., WangJ. H., WangJ.. Chinese Journal of Scientific Instrument, 2007, 28: 140

[11]

AgeevV. P., BarchukovA. I., BunkinF. V., KonovV. I., KorobeinikovV. P., PutjatinB.V., MudjakovV. M.. Acta Astronautics, 1980, 7: 79

[12]

N Glumac, G Elliott, and M Boguszko, 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005, 1.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/