High-quality single-crystal CdSe nanoribbons and their optical properties

D. D. Hou, Y. K. Liu, J. A. Zapien, Y. Y. Shan, S. T. Lee

Optoelectronics Letters ›› 2008, Vol. 4 ›› Issue (3) : 161-164.

Optoelectronics Letters ›› 2008, Vol. 4 ›› Issue (3) : 161-164. DOI: 10.1007/s11801-008-8021-7
Article

High-quality single-crystal CdSe nanoribbons and their optical properties

Author information +
History +

Abstract

Large-scale synthesis of single-crystal CdSe nanoribbons is achieved by a modified thermal evaporation method, in which two-step-thermal-evaporation is used to control CdSe sources’ evaporation. The synthesized CdSe nanoribbons are usually several micrometers in width, 50 nm in thickness, and tens to several hundred micrometers in length. Studies have shown that high-quality CdSe nanoribbons with regular shapes can be obtained by this method. Room-temperature photoluminescence indicates that the lasing emission at 710 nm has been observed under optical pumping (266 nm) at power densities of 25–153 kW/cm2. The full width half maximum (FWHM) of the lasing mode is 0.67 nm

Cite this article

Download citation ▾
D. D. Hou, Y. K. Liu, J. A. Zapien, Y. Y. Shan, S. T. Lee. High-quality single-crystal CdSe nanoribbons and their optical properties. Optoelectronics Letters, 2008, 4(3): 161‒164 https://doi.org/10.1007/s11801-008-8021-7

References

[1]
HodesG., Albu-YaronA., DeckerF., MotisukeP.. Phys. Rev. B., 1987, 36: 4215
CrossRef Google scholar
[2]
LiL. S., HuJ. T., YangW. D., AlivisatosA. P.. Nano lett., 2001, 1: 349
CrossRef Google scholar
[3]
SelvanS. T., TanT. T., YingJ. Y.. Adv. Mater., 2005, 17: 1620
CrossRef Google scholar
[4]
YuZ. H., HahnM. A., CalcinesJ., KraussT. D., ScilcoxJ.. Appl. Phys. Lett., 2005, 86: 013101
[5]
YuP. R., NedeljkovicJ. M., AhrenkielP. A.. Nano Lett., 2004, 4: 1089
CrossRef Google scholar
[6]
ColvinV. L., SchlampM. C., AlivisatoA. P.. Nature, 1994, 370: 354
CrossRef Google scholar
[7]
DyadyushaL., YinH., JaiswalS., BrownT., BaumbergJ. J., BooyF. P., MelvinT.. Chem. Commun., 2005, 25: 3201
CrossRef Google scholar
[8]
ChanW. C., NieS. M.. Science, 1998, 281: 2016
CrossRef Google scholar
[9]
KlarreichE.. Nature, 2001, 413: 450
CrossRef Google scholar
[10]
SeydelC.. Science, 2003, 300: 80
CrossRef Google scholar
[11]
PengX. S., ZhangJ., WangX. F., WangY. W., ZhaoL. X., MengG. W., ZhangL. D.. Chem. Phys. Lett., 2001, 343: 470
CrossRef Google scholar
[12]
XuD. S., ShiX. S., GuoG. L., GuiL. L., TangY. Q.. J. Phys. Chem B, 2000, 104: 5061
CrossRef Google scholar
[13]
JiangX. C., MayersB., HerricksT., XiaY. N.. Adv. Mater, 2003, 15: 1740
CrossRef Google scholar
[14]
DingY., MaC., WangZ. L.. Adv. Mater., 2004, 16: 1740
CrossRef Google scholar
[15]
MaC., WangZ. L.. Adv. Mater., 2005, 17: 2635
CrossRef Google scholar
[16]
LiuY. K., ZapienJ. A., ShanY. Y., GengC. Y., LeeC. S., LeeS. T.. Adv. Mater., 2005, 17: 1372
CrossRef Google scholar
[17]
LiuY. K., GengC. Y., ZapienJ. A., ShanY. Y., LeeC. S., LifshitzY., LeeS. T.. Appl. Phys. Lett., 2004, 85: 3241
CrossRef Google scholar
[18]
ZapienJ. A., JiangY., MengX. M., ChenW., AuF. C. K., LifshitzY., LeeS. T.. Appl. Phys. Lett., 2004, 84: 1189
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/