An organic light-emitting devices of highly efficient white phosphor using an electron/exciton blocker

Wen-long Jiang, Gui-ying Ding, Jin Wang, Jing Wang, Li-zhong Wang, Xi Chang, Qiang Han, Hong-mei Wang, Xiao-hong Zhao

Optoelectronics Letters ›› 2008, Vol. 4 ›› Issue (1) : 26-29.

Optoelectronics Letters ›› 2008, Vol. 4 ›› Issue (1) : 26-29. DOI: 10.1007/s11801-007-7084-9
Article

An organic light-emitting devices of highly efficient white phosphor using an electron/exciton blocker

Author information +
History +

Abstract

Highly efficient white phosphorescent organic light-emitting devices (WOLEDs) was fabricated using an electron/exciton blocker. The device structure is ITO/2T-NATA(25 nm)/ NPBX(25-dnm)/CBP:5%Ir(ppy)3:0.5%Rubrene(8 nm)/NPBX(dnm)/DPVBi(30 nm)/TPBi(20 nm)/Alq(10nm)/LiF(1nm)/Al, in which N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1, 1′-biphenyl-4,4′-diamine (NPBX) functions as a hole transport layer and electron/exciton blocker, 4,4,N,N′-dicarbazolebiphenyl (CBP) is host, 4,4′-bis(2,2-diphenyl vinyl)-1,1′-biphenyl (DPVBi) is blue fluorescent dye, 5,6,11,12,-tetraphenylnaphthacene (rubrene) is fluorescent dye, factris (2-phenylpyridine) iridium (Ir(ppy)3) is phosphorescent sensitizer and tris(8-hydroxyquinoline) aluminum (Alq3) is an electron transport layer. The WOLEDs have obtained white light emission by adjusting the thickness of NPBX, when the concentration of Ir(ppy)3 is 5-wt% and rubrene is 0.5-wt%, respectively, the thickness of the doped emissive layer is 8 nm, the WOLEDs show a maximum luminous efficiency is 11.2 cd/A with d of 10 nm at 7 V and a maximum luminance of 28170 cd/m2 at 17 V, the CIE coordinates is (0.37.0.42), which is in white region.

Cite this article

Download citation ▾
Wen-long Jiang, Gui-ying Ding, Jin Wang, Jing Wang, Li-zhong Wang, Xi Chang, Qiang Han, Hong-mei Wang, Xiao-hong Zhao. An organic light-emitting devices of highly efficient white phosphor using an electron/exciton blocker. Optoelectronics Letters, 2008, 4(1): 26‒29 https://doi.org/10.1007/s11801-007-7084-9

References

[1]
D’AndradeW., ThompsonM.E., ForrestS.R.. Adv.Mater., 2002, 14: 147
CrossRef Google scholar
[2]
CaoJ., WeiF. x., ZhanG. X.. Journal of Optoelectronics · Laser, 2005, 16: 1171
[3]
WuX.-m., HuaY.-l., WangZ.-q.. Journal of Optoelectronics Laser, 2006, 17: 1177
[4]
BaldoM. A., O’BrienD.F., YouY., ShoustikovA., SibleyS., ThompsonM. E., ForrestS. R.. Nature, 1998, 395: 151
CrossRef Google scholar
[5]
BaldoM. A., ThompsonM. E., ForrestS. R.. Nature, 2000, 403: 750
CrossRef Google scholar
[6]
TokitoS., LijimaT., TsuzukiT., SatoF.. Appl Phys Lett, 2003, 83: 2459
CrossRef Google scholar
[7]
D’AndradeB. W., ThompsonM. E., ForrestS. R.. Adv. Mater, 2002, 14: 147
CrossRef Google scholar
[8]
LiF., ChengG., ZhaoY., FengJ., LiuS., ZhangM., MaY.. J. Shen, Appl. Phys. Lett., 2003, 83: 4716
CrossRef Google scholar
[9]
YangX. H., NeherD.. Phys. Lett., 2004, 84: 2476
[10]
ChengG., LiF., DuanY., FengJ., LiuS., QiuS., LinD., MaY., LeeS. T.. Appl. Phys. Lett, 2004, 82: 4224
CrossRef Google scholar
[11]
LeiG., WangL., QiuY.. Appl. Phys. Lett., 2004, 85: 5403
CrossRef Google scholar
[12]
Zhang Y F, Cheng G, Zhao Y, Hou J Y, and Liu S Y, Appl Phys Lett, 86(2005).

Accesses

Citations

Detail

Sections
Recommended

/