Influences of laser energy density and annealing on structure properties of AIN films prepared by pulsed laser deposition

Lei Lü, Qing-shan Li, Li Li, Li-chun Zhang, Cai-feng Wang, Hong-xia Qi, Mengmeng Zheng

Optoelectronics Letters ›› 2007, Vol. 3 ›› Issue (4) : 286-288.

Optoelectronics Letters ›› 2007, Vol. 3 ›› Issue (4) : 286-288. DOI: 10.1007/s11801-007-6187-z
Optoelectronics Letters

Influences of laser energy density and annealing on structure properties of AIN films prepared by pulsed laser deposition

Author information +
History +

Abstract

Aluminum nitride (AlN) films with h<100> crystalline orientation are fabricated on p-Si (100) substrates at room temperature by pulsed laser deposition. The effects of laser energy density and annealing on the quality of the films are studied by x-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The crystalline quality of AlN films is improved considerably by increasing the laser energy density while there is increased number of farraginous particles on the surface. The annealing treatment at 600°C produces a recrystallization process in the film, characterized by the improvement of the original crystallinity, the appearance of new crystalline orientations, and the increase of the crystallites. The surface becomes rougher due to the increase of the grain size during annealing.

Cite this article

Download citation ▾
Lei Lü, Qing-shan Li, Li Li, Li-chun Zhang, Cai-feng Wang, Hong-xia Qi, Mengmeng Zheng. Influences of laser energy density and annealing on structure properties of AIN films prepared by pulsed laser deposition. Optoelectronics Letters, 2007, 3(4): 286‒288 https://doi.org/10.1007/s11801-007-6187-z

References

[1]
MorkocH., StriteS., GaoG. B.. J. Appl. Phys, 1994, 76: 1363
CrossRef Google scholar
[2]
VisputeR. D., NarayanJ., WuH.. J. Appl. Phys., 1995, 77: 4724
CrossRef Google scholar
[3]
MooreW. J., FreitasJ. A., HolmR. T.. Appl. Phys. Lett., 2005, 86: 141912
[4]
LiuF. S., LiuQ. L., LiangJ. K.. J. Appl. Phys, 2006, 99: 053515
[5]
ChenS. W., LinH. F., SungT. T.. Electron. Lett., 2003, 39: 1691
CrossRef Google scholar
[6]
StriteS., MorkocH.. J. Vac. Sci. Technol. B, 1992, 10: 1237
CrossRef Google scholar
[7]
NiX. F., ZhuL. P., YeZ. Z.. Surface Coatings Technol., 2005, 198: 350
CrossRef Google scholar
[8]
HiratoK., FujiokaH., ItoS.. Thin Solid Films, 2003, 435: 131
CrossRef Google scholar
[9]
KayaK., TakahashiH., ShibataY.. Jpn. J. Appl. Phys., 1997, 36: 2837
CrossRef Google scholar
[10]
DovidenkoK., OktyabrskyS., NarayanJ.. J. Appl. Phys., 1997, 82: 4296
CrossRef Google scholar
[11]
XiD. J., ZhengY. D., ChenP.. Chin. Phys. Lett., 2002, 19: 543
CrossRef Google scholar
[12]
V. M. Torres, J. L. Edwards, and B. J. Wilkens, Appl. Phys. Lett., 741(999), 985.
[13]
OnojimaN., SudaJ., MatsunamiH.. Appl. Phys. Lett., 2002, 80: 76
CrossRef Google scholar
[14]
LinW. T., MengL. C., ChenG. J.. Appl. Phys. Lett., 1995, 66: 2066
CrossRef Google scholar
[15]
GyorgyE., RistoscuC., MihailescuI. N.. J. Appl. Phys., 2001, 90: 456
CrossRef Google scholar
[16]
RistoscuC., DucuC., SocolG.. Appl. Surf. Sci., 2005, 248: 411
CrossRef Google scholar
[17]
WatanabeY., KitazawaN., NakamuraY.. J. Vac. Sci. Technol., 2000, A18: 1567
[18]
ZhangX., ChenT. L., LiX. M.. J. Inorganic Mater., 2005, 20: 419
[19]
KarJ. P., BoseG., TuliS.. Surface Coatings Technol., 2005, 198: 64
CrossRef Google scholar
[20]
VergaraL., OlivaresJ., IborraE.. Thin Solid Films, 2006, 515: 1814
CrossRef Google scholar
[21]
KarJ. P., BoseG., TuliS.. Current Appl. Phys., 2006, 6: 873
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/