Effect of different processing methods for the hole transporting layer on the performance of double layer organic light-emitting devices

Fan Suo , Jun-sheng Yu , Jing Deng , Shuang-ling Lou , Ya-dong Jiang

Optoelectronics Letters ›› 2007, Vol. 3 ›› Issue (4) : 282 -285.

PDF
Optoelectronics Letters ›› 2007, Vol. 3 ›› Issue (4) : 282 -285. DOI: 10.1007/s11801-007-6176-2
Optoelectronics Letters

Effect of different processing methods for the hole transporting layer on the performance of double layer organic light-emitting devices

Author information +
History +
PDF

Abstract

The hole transporting layer (HTL) of organic light-emitting device (OLED) was processed by vacuum deposition and spin coating method, respectively, where N,N′-biphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine (TPD) and poly (vinylcarbazole) (PVK) acted as the hole-transport materials. Tris-(8-hydroxyquinoline)-aluminum (Alq3) was utilized as both the light-emitting layer and the electron transporting layer. The basic structure of the device cell was: indium-tin-oxide (ITO)/PVK : TPD/Alq3/Mg:Ag. The electroluminescent (EL) characteristics of devices were characterized. The results showed that the peak of EL spectra was located at 530 nm, which conformed to the characterizing spectrum of Alq3. Compared with using vacuum deposition method, the green emission with a maximum luminance up to 26135 cd/m2 could be achieved at a drive voltage of 15 V by selecting proper solvent using spin-coating technique, and its maximum luminance efficiency was 2.56 lm/W at a drive voltage of 5.5 V.

Cite this article

Download citation ▾
Fan Suo, Jun-sheng Yu, Jing Deng, Shuang-ling Lou, Ya-dong Jiang. Effect of different processing methods for the hole transporting layer on the performance of double layer organic light-emitting devices. Optoelectronics Letters, 2007, 3(4): 282-285 DOI:10.1007/s11801-007-6176-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TangC. W., VanslykeS. A.. Appl. Phys. Lett., 1987, 51: 913

[2]

KimS. K., ChungT. G., ChungD. H., LeeH. S., SongM. J., ParkJ. W., LeeJ. U., KimT. W.. Optical Materials, 2002, 21: 159

[3]

TangC. W., VanslykeS. A., ChenC. H.. J. Appl. Phys., 1989, 65: 3610

[4]

KidoJ., IizumiY.. Appl. Phys. Lett., 1998, 73: 2721

[5]

ShenZ., BurrowsP. B., BulovicV., ForrestS. R., ThompsonM. E.. Science., 1997, 276: 2009

[6]

SheatsJ. R., AntoniadisH., HueschenM., LeonardW., MillerJ., MoonR., RoitmanD., StockingA.. Science., 1996, 273: 884

[7]

MullerC. D., FalcouA.. Nature, 2003, 421: 829

[8]

BoQ., ZhijianC., FengX., HuayuC., MaomaoH., QihuangG.. Materials Letters, 2006, 60: 1927

[9]

FriendR. H.. Nature, 1999, 397: 121

[10]

StolkaM., JanusJ. F., PaiD. M.. J Phys Chem, 1984, 88: 4707

[11]

ChenC. H., ShiJ., TangC. W.. Macromol Symp, 1997, 125: 1

[12]

KimJ. S., CacialliF., ColaA., GigliG., CingolaniR.. Synthetic Metals, 2000, 111–112: 363

[13]

NguyenT. Pr., Le. RenduP.. Synthetic Metals, 2003, 138: 229

[14]

Ravi KishoreV. V. N., AzizA., NarasimhanK. L., PeriasamyN., MeenakshiP. S., WategaonkarS.. Synthetic Metals, 2002, 126: 199

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/