Enhancement of signal-noise-ratio in a distributed polarization mode coupling detection system

Wen-cai Jing, Xiao-jingi Li, Kun Liu, Tian-hua Xu, Yi-mo Zhang, Hong-xia Zhang, Da-gong Jia, Gang-Ding Peng

Optoelectronics Letters ›› 2007, Vol. 3 ›› Issue (1) : 0.

Optoelectronics Letters ›› 2007, Vol. 3 ›› Issue (1) : 0. DOI: 10.1007/s11801-007-6158-4
Article

Enhancement of signal-noise-ratio in a distributed polarization mode coupling detection system

Author information +
History +

Abstract

A distributed polarization-mode coupling measurement system was designed and implemented using white light interferometry. It can be used for the measurement of polarization mode coupling in a high-birefringence fiber of up to 1 km. This system can be used in both fiber-optic sensors and optical fiber communications. Wavelet Transform was adopted in data processing to improve the signal-noise-ratio. The signal-noise-ratio of this system was improved more than 15 dB after denoising. The influence of denoising threshold on signal-noise-ratio and measurement accuracy was also discussed. Hilbert Transform and non-linear regression can be used in conjunction with Wavelet Transform to enhance the signal-noise-ratio and spatial resolution of this system.

Keywords

Wavelet transform / denoising / polarization

Cite this article

Download citation ▾
Wen-cai Jing, Xiao-jingi Li, Kun Liu, Tian-hua Xu, Yi-mo Zhang, Hong-xia Zhang, Da-gong Jia, Gang-Ding Peng. Enhancement of signal-noise-ratio in a distributed polarization mode coupling detection system. Optoelectronics Letters, 2007, 3(1): 0 https://doi.org/10.1007/s11801-007-6158-4

References

[1]
JingW., ZhangY., ZhouG., TangF., LiH.. Opt. Express, 2002, 10: 685
[2]
Wencai Jing, Kun Liu, and Yimo Zhang, Proceedings of the 5th International Conference on Optical Communications and Networks & the 2nd International Symposium on Advances and Trends in Fiber Optics and Applications, 2006, 425.
[3]
YuanL., ZhouL., JinW.. Opt. Lett., 2000, 25: 1074
[4]
ShlyaginM., KhomenkoA., TentoriD.. Opt. Lett., 1994, 19: 913
[5]
JingW., ZhangY., ZhouG., ZhangH., LiZ., ManX.. Opt. Express, 2002, 10: 972
[6]
Tpia-MercadoJ., KhomenkoA. V., Garcia-WeidnerA.. J. Lightwave Technol., 2001, 19: 70
CrossRef Google scholar
[7]
JingW., LiQ.. Journal of optoelectronics • laser, 2005, 16: 195
[8]
JingW., LiQ., TangF.. Journal of optoelectronics • laser, 2005, 16: 1
[9]
ManX., zhangY.. Journal of optoelectronics • laser, 2002, 13: 1022
[10]
YuL., ZhouG.. Journal of optoelectronics • laser, 2003, 14: 721
[11]
SuzukiK., KubotaH., KawanishiS., TanakaM., FujitaM.. Opt. Express, 2001, 9: 676
CrossRef Google scholar
[12]
WolinskiT. R., BockW. J.. J. of Lightwave Technol., 1993, 11: 389
CrossRef Google scholar
[13]
LeeJ.-Y., SuD.-C.. Opt. Commun., 2001, 198: 333
CrossRef Google scholar
[14]
TakadaK., NodaJ., OkamotoK.. Opt. Lett., 1986, 11: 680
CrossRef Google scholar
[15]
Esteve-TaboadaJ. J., GarciaJ., FerreiraC., MendlovicD., ZalevskyZ.. J. Opt. Soc. Am. A, 2001, 18: 157
[16]
MendlovicD.. Appl. Opt., 1998, 37: 1279
CrossRef Google scholar
[17]
SandozP.. Opt. Lett., 1997, 22: 1065
[18]
FangH.-T., HuangD.-S.. Opt. Commun., 2004, 233: 67
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/