Quantum fluctuations of mesoscopic damped mutual capacitance coupled double resonance RLC circuit in thermal excitation state

Xing-Lei Xu

Optoelectronics Letters ›› 2007, Vol. 3 ›› Issue (1) : 73-77.

Optoelectronics Letters ›› 2007, Vol. 3 ›› Issue (1) : 73-77. DOI: 10.1007/s11801-007-6111-6
Article

Quantum fluctuations of mesoscopic damped mutual capacitance coupled double resonance RLC circuit in thermal excitation state

Author information +
History +

Abstract

Mesoscopic damped mutual capacitance coupled double resonance circuit is quantized by the method of damped harmonic oscillator quantization. Hamiltonian is diagonalized by the method of unitary transformation. The energy spectra of this circuit are given. The quantum fluctuations of the charge and current of each loop are investigated by the method of thermofield dynamics (TFD) in thermal excitation state, thermal squeezed vacuum state, thermal vacuum state and vacuum state. It is shown that the quantum fluctuations of the charge and current are related to not only circuit inherent parameter and coupled magnitude, but also quantum number of excitation, squeezed coefficients, squeezed angle and environmental temperature. And the quantum fluctuations increase with the increase of temperature and decay with time.

Cite this article

Download citation ▾
Xing-Lei Xu. Quantum fluctuations of mesoscopic damped mutual capacitance coupled double resonance RLC circuit in thermal excitation state. Optoelectronics Letters, 2007, 3(1): 73‒77 https://doi.org/10.1007/s11801-007-6111-6

References

[1]
WangJ.S., LiuT.K., ZhanM.S.. Phys Lett A, 2000, 276: 155
CrossRef Google scholar
[2]
WangJ.S., FengJ., ZhanM.S.. Phys Lett A, 2001, 281: 341
CrossRef Google scholar
[3]
JiY.H., LeiM.S.. Int J Theor Phys, 2002, 41: 1339
CrossRef Google scholar
[4]
JiY.H., LeiM.S.. Chin J Quan Electron, 2002, 19: 48
[5]
ZhangS.. Chin Phys Lett, 2003, 20: 561
CrossRef Google scholar
[6]
SongT.Q.. Int J Theor Phys, 2003, 42: 793
CrossRef Google scholar
[7]
SongT.Q.. Commun Theor Phys, 2003, 39: 447
[8]
WangJ.S., LiuT.K., ZhanM.S.. Acta Phys Sin, 2000, 49: 2271
[9]
SongT.Q.. Acta Phys Sinic, 2004, 53: 1352
[10]
MaX.P., ZhangS.. Chin J Quan Electron, 2004, 21: 43
[11]
LiH.Q.. J Optoelectron•laser, 2005, 16: 757
[12]
LiH.Q.. Acta Sin.Quantum Optica, 2005, 11: 93
[13]
LiH.Q.. Acta Phys.Sin., 2005, 53: 1361
[14]
LiH.Q., XuX.L.. Optoelectron.Lett., 2005, 1: 0155
CrossRef Google scholar
[15]
LiH.Q., XuX.L., WangJ.S.. Int J Theor Phys, 2006, 45: 546
CrossRef Google scholar
[16]
X.L. Xu, H.Q. Li and J.S. Wang, Int J Theor Phys. 45 (2006).
[17]
XuX.L., LiH.Q.. J Qufu Normal University, 2006, 32: 73
[18]
PengH.W.. Acta Phys Sin, 1980, 29: 1084
[19]
SchwingerJ.. Quantum Theory of Angular Monentum, 1965, New York, Academic Press
[20]
CuiY. S.. J Xiamen University, 2000, 39: 323
[21]
PengJ. S., LiG. X.. An Introduction Modern Quantum Optics, 1996, Beijing, Science Press
[22]
UmezawaH., YamanakaY.. Adv Phys, 1988, 37: 531
CrossRef Google scholar
[23]
H.Y. Fan, Quantum Mechanics to Quantum Optics, Shang Hai. 2005. (in Chinese)
[24]
JiY.H., WanH. M.. Jiangxi Science, 2000, 18: 131

Accesses

Citations

Detail

Sections
Recommended

/