Defect in photonic crystal with negative index material

Kang-song Tang, Yuan-jiang Xiang, Shuang-chun Wen

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (2) : 118-121.

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (2) : 118-121. DOI: 10.1007/BF03034028
Materials

Defect in photonic crystal with negative index material

Author information +
History +

Abstract

The transmission property of the photonic crystal containing negative index material is analyzed by means of transfer matrix method. It is demonstrated that a defect mode appears in the conventional Bragg gap and the defect mode is sensitive to the position of the defect cell. For the first time to our knowledge we introduce two defects into such a structure and discuss the dependence of the transmission on the interval of the two defect cells. It is found that a wide degenerate defect mode appears in the Bragg gap, and this degenerate defect mode splits into two different defect modes when the two defect cells become closer.

Cite this article

Download citation ▾
Kang-song Tang, Yuan-jiang Xiang, Shuang-chun Wen. Defect in photonic crystal with negative index material. Optoelectronics Letters, 2006, 2(2): 118‒121 https://doi.org/10.1007/BF03034028

References

[1]
YablonovitchEli. Phys. Rev. Lett., 1987, 58: 2059-2059
CrossRef Google scholar
[2]
JohnS.. Phys. Rev. Lett., 1987, 58: 2486-2486
CrossRef Google scholar
[3]
VeselagoV. G.. Sov. Phys. Usp., 1968, 10: 509-509
CrossRef Google scholar
[4]
EleftheriadesG. V.. IEEE Trans. Microwave Theory Tech., 2002, 50: 2702-2702
CrossRef Google scholar
[5]
SmithD. R., KrollN.. Phys. Rev. Lett., 2000, 85: 2933-2933
CrossRef Google scholar
[6]
LuoO., IbanescuM., JohnsonS. G.. Science, 2003, 299: 368-368
CrossRef Google scholar
[7]
SeddonN., BearparkT.. Science, 2003, 302: 1537-1537
CrossRef Google scholar
[8]
PendryJ. B.. Phys. Rev. Lett., 2000, 85: 3966-3966
CrossRef Google scholar
[9]
JiangHaitao, ChenHong. Appl. Phys. Lett., 2003, 83: 5386-5386
CrossRef Google scholar
[10]
LiJ, ZhouL., ChanC. T., ShengP.. Phys. Rev. Lett., 2003, 90: 083901-083901
CrossRef Google scholar
[11]
ZhangZ. M., FuC. J.. Appl. Phys. Lett., 2002, 80: 1097-1097
CrossRef Google scholar
[12]
NefedovI S., TretyalovSergei A.. Phys. Rev. E, 2002, 66: 036611-036611
CrossRef Google scholar
[13]
wuLiang, HeSailing, ShenLinfang. Phys. Rev. B, 2003, 67: 235103-235103
CrossRef Google scholar
[14]
ShadrivovI. V., ZharovaN. A., ZharovA. A.. Phys. Rev. E, 2004, 70: 046615-046615
CrossRef Google scholar
[15]
Wei-zongChen, Ling-liFu, Man-liHu. J of Optoelectronics · Laster, 2003, 14: 760-760
[16]
Manga RaoV. S. O., Dutta GuptaS.. J. Opt A: Pure Appl. Opt., 2004, 6: 756-756
CrossRef Google scholar
[17]
ReynoldsA L., PeschelU, LedererF. IEEE Trans. Microwave Theory Tech., 2001, 49: 1860-1860
CrossRef Google scholar
[18]
XiaoqinHuang, YipingCui. Chin. Phys. Lett., 2003, 20: 1721-1721
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/