Photoluminescence origin of nanocrystalline SiC films

Ji-wen Liu , Juan Li , Yan-hui Li , Chang-ling Li , Yan-ping Zhao , Jie Zhao , Jing-jun Xu

Optoelectronics Letters ›› 2005, Vol. 1 ›› Issue (2) : 96 -99.

PDF
Optoelectronics Letters ›› 2005, Vol. 1 ›› Issue (2) : 96 -99. DOI: 10.1007/BF03033676
Devices and Applications

Photoluminescence origin of nanocrystalline SiC films

Author information +
History +
PDF

Abstract

The nanocrystalline SiC films were prepared on Si (111) substrates by rf magnetron sputtering and then annealed at 800°C and 1000°C for 30 minutes in a vacuum annealing system. The crystal structure and crystallization of as-annealed SiC films were determined by the Fourier transform infrared (FTIR) absorption spectra and the X-ray diffraction (XRD) analysis. Measurement of photoluminescence (PL) of the nanocrystalline SiC (nc-SiC) films shows that the blue light with 473 nm and 477 nm wavelengths emitted at room temperature and that the PL peak shifts to shorter wavelength side and the PL intensity becomes stronger as the annealing temperature decreases. The time-resolved spectrum of the PL at 477 nm exhibits a bi-exponential decay process with lifetimes of 600 ps and 5 ns and a characteristic of the direct band gap. The strong blue light emission with short PL lifetimes suggests that the quantum confinement effect of the SiC nanocrystals resulted in the radiative recombination of the direct optical transitions.

Cite this article

Download citation ▾
Ji-wen Liu, Juan Li, Yan-hui Li, Chang-ling Li, Yan-ping Zhao, Jie Zhao, Jing-jun Xu. Photoluminescence origin of nanocrystalline SiC films. Optoelectronics Letters, 2005, 1(2): 96-99 DOI:10.1007/BF03033676

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guang-mingLi, BurggrafL. W., ShoemakerJ. R.. Applied Physics Letters, 2000, 76: 3373-3373

[2]

Ji-wenLiu, Fang-qingXie, Ding-yongZhong. Chinese Physics, 2001, 10: 36-36

[3]

FengD. H., JiaT. Q., LiX. X.. Solid State Communications, 2003, 128: 295-295

[4]

HoffmanL., ZiegleG., TheisD.. Journal of Applied Physics, 1982, 53: 6962-6962

[5]

XuS. J., YuM. B., Rusli. Applied Physics Letters, 2000, 76: 2550-2550

[6]

YuM. B., Rusli, YoonS. F.. Thin Solid Films, 2000, 377: 177-177

[7]

SpitzerW. G., KleimanD. A., FroschC. J.. Physical Review, 1959, 113: 133-133

[8]

LeiY. M., YuY. H., ChengL. L.. Journal of Applied Physics, 2000, 88: 3053-3053

[9]

LiuJ. W., ZhongD. Y., XieF. Q., WangE. G., LiuW. X.. Chemical Physics Letters, 2001, 348: 357-357

[10]

Ji-wenLiu, JuanLi, Yan-pingZhao, Yan-huiLi, Chang-lingLi, Jing-junXu. Journal of Optoelectronics · Laser, 2005, 16: 274-274(in Chinese)

[11]

KinsbronE., SternheimM., KnoellR.. Applied Physics Letters, 1983, 42: 835-835

[12]

Yin-yueWang, Ying-huYang, Yong-pingGuo. Acta Physica Sinica, 1997, 46: 203-203(in Chinese)

[13]

BergmanJ. P., JanzenE., SridharaS. G.. Materials Science Forum, 1998, 64-268: 485-485

[14]

Pt HooftG. W., Van der PoelW. A. J. A., MolenkampL. W.. Physical Review B, 1987, 35: 8281-8281

[15]

OliverBrandt, JensRingling, KlausH. Ploog. Physical Review B, 1998, 58: R15977-R15977

[16]

KamasaKuroda, AtsushiTackeuch, TakayukiSota. Applied Physics Letters, 2000, 76: 3753-3753

[17]

AlekseyD., Andreev, EoinP.. Applied Physics Letters, 2001, 79: 521-521

[18]

BisiO., StefanoOssicini, PavesiL.. Surface Science Reports, 2000, 38: 80-80

AI Summary AI Mindmap
PDF

83

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/