Ferromagnetism of Mn-doped ZnO nanoparticles prepared by sol-gel process at room temperature

Gui-jun Huang, Jin-bin Wang, Xiang-li Zhong, Gong-cheng Zhou, Hai-long Yan

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (6) : 439-442.

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (6) : 439-442. DOI: 10.1007/BF03033636
Materials

Ferromagnetism of Mn-doped ZnO nanoparticles prepared by sol-gel process at room temperature

Author information +
History +

Abstract

Mn-doped ZnO diluted magnetic semiconductor nanoparticles are prepared by an ultrasonic assisted solgel process. Transmission electron microscopy shows pseudo-hexagonal nanoparticles with an average size of about 24 nm. From the analysis of X-ray diffraction, the Mn-doped ZnO nanoparticles are identified to be a wurtzite structure without any impurity phases. The magnetic properties are measured by using superconducting quantum interference device. For the ZnO with 2% Mn doping concentration, a good hysteresis loop indicates fine ferromagnetism with a Curie temperature higher than 350 K.

Cite this article

Download citation ▾
Gui-jun Huang, Jin-bin Wang, Xiang-li Zhong, Gong-cheng Zhou, Hai-long Yan. Ferromagnetism of Mn-doped ZnO nanoparticles prepared by sol-gel process at room temperature. Optoelectronics Letters, 2006, 2(6): 439‒442 https://doi.org/10.1007/BF03033636

References

[1]
DietlT., OhnoH., MatsukuraF.. Science, 2000, 287: 1019-1019
CrossRef Google scholar
[2]
SchwartzD. A., KittilstvedK. R., GamelinaD. R.. Appl. Phys. Lett., 2004, 85: 1395-1395
CrossRef Google scholar
[3]
BalkJ. M., LeeJ-L.. Adv. Mater., 2005, 17: 2745-2745
CrossRef Google scholar
[4]
HongN. H., SakaiJ., HuongN. T.. Phys. Rev. B, 2005, 72: 045336-045336
CrossRef Google scholar
[5]
HongN. H., SakaiJ., HassiniA.. J. Appl. Phys., 2005, 97: 10D312-10D312
CrossRef Google scholar
[6]
KaneM. H., ShaliniK., SummersC. J.. J. Appl. Phys., 2005, 97: 023906-023906
CrossRef Google scholar
[7]
WellmannP. J., GarciaJ. M., FengJ-L.. Appl. Phys. Lett., 1997, 71: 2532-2532
CrossRef Google scholar
[8]
LuoJ., LiangJ. K., LiuQ. L.. J. Appl. Phys., 2005, 97: 086106-086106
CrossRef Google scholar
[9]
CoeyJ. M. D.. J. Appl. Phys., 2005, 97: 10D313-10D313
CrossRef Google scholar
[10]
PeartonS. J., NortonD. P., IpK.. Progress in Mater. Sci., 2005, 50: 293-293
CrossRef Google scholar
[11]
VenkatesanM., FitzgeraldC. B., CoeyJ. M. D.. Nature, 2004, 430: 630-630
CrossRef Google scholar
[12]
ErikssonO., BergqvistL., SanyalB. J.. Phys. Condens. Matter., 2004, 16: 5481-5481
CrossRef Google scholar
[13]
ChartierA., ArcoP. D., DovesiR.. Phys. Rev. B, 1999, 60: 14042-14042
CrossRef Google scholar
[14]
SharmaP., GuptaA., RaoK. V.. Nat. Mater., 2003, 2: 673-673
CrossRef Google scholar
[15]
CoeyJ. M. D., VenkatesanM., FitzgeraldC. B.. Nat. Mater., 2005, 4: 173-173
CrossRef Google scholar
[16]
ChenZ. Q., KawasusoA., XuY.. Phys. Rev. B, 2005, 71: 115213-115213
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/