Thermal effects on structure and photoluminescence properties of diamond-like carbon films prepared by pulsed laser deposition

Da Chen, Qing-shan Li, Jing-jing Wang, Xue-gang Zheng

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (3) : 182-185.

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (3) : 182-185. DOI: 10.1007/BF03033541
Devices and Applications

Thermal effects on structure and photoluminescence properties of diamond-like carbon films prepared by pulsed laser deposition

Author information +
History +

Abstract

Un-hydrogenated Diamond-like Carbon (DLC) films were prepared by pulsed laser deposition technique at different substrate temperature. The Raman spectra, the absorption and the photoluminescence spectra were measured. The dependence of structure and photoluminescence properties on deposition temperature were studied in detail. The experimental results indicate that the sp2 sites form small clusters that consist of both olefinic chains and aromatic ring groups within the sp3 matrix. With raising deposition temperature, the optical band gaps increase from 1.87 to 2.85 eV. The main band of photoluminescence centered at around 700 nm shifts to short wavelength, and the intensity of this band increases. The photoluminescence can be attributed to carrier localization within an increasing sp2 clusters. It was clarified that the DLC films are ordered with increasing deposition temperature.

Cite this article

Download citation ▾
Da Chen, Qing-shan Li, Jing-jing Wang, Xue-gang Zheng. Thermal effects on structure and photoluminescence properties of diamond-like carbon films prepared by pulsed laser deposition. Optoelectronics Letters, 2006, 2(3): 182‒185 https://doi.org/10.1007/BF03033541

References

[1]
RobertsonJ.. Diamond Relat. Mater, 1996, 5: 457-457
CrossRef Google scholar
[2]
DeMichelisF., SchreiterS., TagliaferroA.. Phys. Rev. B., 1995, 51: 2143-2143
CrossRef Google scholar
[3]
SilvaS. R. P., RusliJ. Schwan, AmaratungaG. A. J.. Philos. Mag. B, 1996, 74: 369-369
CrossRef Google scholar
[4]
RobertsonJ.. Phys. Rev. B., 1996, 53: 16302-16302
CrossRef Google scholar
[5]
MarchonB., GuiJ., GrannenK.. IEEE Trans. Magn, 1997, 33: 3148-3148
CrossRef Google scholar
[6]
QingshanLi, RongchuanFang, YurongMa. Thin Solid Films, 1993, 226: 99-99
CrossRef Google scholar
[7]
SatyanarayanaB. S., RobertsonJ., MilneW. I.. J. Appl. Phys., 2000, 87: 3126-3126
CrossRef Google scholar
[8]
SiegalM. P., OvermyerD. L., KottenstetteR. J.. Appl. Phys. Lett., 2002, 80: 3940-3940
CrossRef Google scholar
[9]
Riabkina-FishmanKarpman J., JzahaviM., DhamalincourtD. Diamond and Relat. Mater, 1994, 4: 10-10
CrossRef Google scholar
[10]
RobertsonJ.. Diamond Relat. mater., 1995, 4: 297-297
CrossRef Google scholar
[11]
SchwanJ., UlrichS., RothH.. J. Appl. Phys., 1999, 79: 1416-1416
CrossRef Google scholar
[12]
FerrariA. C., RobertsonJ.. Phys. Rev. B, 2000, 61: 14095-14095
CrossRef Google scholar
[13]
KohlerT., FrauenheimT., JungnickelG.. Phys. Rev. B, 1995, 52: 11837-11837
CrossRef Google scholar
[14]
LopinskiG. P., MerkulovV. I., LanninJ. S.. Appl. Phys. Lett, 1996, 69: 3348-3348
CrossRef Google scholar
[15]
NakazawaH., YamagataY., SuemitsuM.. Thin Solid Films, 2004, 467: 98-98
CrossRef Google scholar
[16]
ChhowallaM., FerrariA. C., RobertsonJ.. Appl. Phys. Lett., 2000, 76: 1419-1419
CrossRef Google scholar
[17]
SalisS. R., GardinerD. J., BowdenM.. Diamond Relat. Mater., 1996, 5: 589-589
CrossRef Google scholar
[18]
MottN. F., DavisE. A.. Electronic Processes in Non-Crystalline Solids, 1979, London, Oxford University Press
[19]
WatanabeI., HasegawaS., KurataY.. Jpn. J. Appl. Phys., 1981, 21: 856-856
CrossRef Google scholar
[20]
WagnerJ., LautenschlagerP.. J. Appl. Phys., 1986, 59: 2044-2044
CrossRef Google scholar
[21]
SchutteS., WillS., MellH., FuhsW.. Diamond Relat. Mater., 1993, 2: 1360-1360
CrossRef Google scholar
[22]
IrisawaT., ArimaY., KurodaT.. J. Cryst. Growth, 1990, 99: 491-491
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/