Thermal effects on structure and photoluminescence properties of diamond-like carbon films prepared by pulsed laser deposition

Da Chen , Qing-shan Li , Jing-jing Wang , Xue-gang Zheng

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (3) : 182 -185.

PDF
Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (3) : 182 -185. DOI: 10.1007/BF03033541
Devices and Applications

Thermal effects on structure and photoluminescence properties of diamond-like carbon films prepared by pulsed laser deposition

Author information +
History +
PDF

Abstract

Un-hydrogenated Diamond-like Carbon (DLC) films were prepared by pulsed laser deposition technique at different substrate temperature. The Raman spectra, the absorption and the photoluminescence spectra were measured. The dependence of structure and photoluminescence properties on deposition temperature were studied in detail. The experimental results indicate that the sp2 sites form small clusters that consist of both olefinic chains and aromatic ring groups within the sp3 matrix. With raising deposition temperature, the optical band gaps increase from 1.87 to 2.85 eV. The main band of photoluminescence centered at around 700 nm shifts to short wavelength, and the intensity of this band increases. The photoluminescence can be attributed to carrier localization within an increasing sp2 clusters. It was clarified that the DLC films are ordered with increasing deposition temperature.

Cite this article

Download citation ▾
Da Chen, Qing-shan Li, Jing-jing Wang, Xue-gang Zheng. Thermal effects on structure and photoluminescence properties of diamond-like carbon films prepared by pulsed laser deposition. Optoelectronics Letters, 2006, 2(3): 182-185 DOI:10.1007/BF03033541

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RobertsonJ.. Diamond Relat. Mater, 1996, 5: 457-457

[2]

DeMichelisF., SchreiterS., TagliaferroA.. Phys. Rev. B., 1995, 51: 2143-2143

[3]

SilvaS. R. P., RusliJ. Schwan, AmaratungaG. A. J.. Philos. Mag. B, 1996, 74: 369-369

[4]

RobertsonJ.. Phys. Rev. B., 1996, 53: 16302-16302

[5]

MarchonB., GuiJ., GrannenK.. IEEE Trans. Magn, 1997, 33: 3148-3148

[6]

QingshanLi, RongchuanFang, YurongMa. Thin Solid Films, 1993, 226: 99-99

[7]

SatyanarayanaB. S., RobertsonJ., MilneW. I.. J. Appl. Phys., 2000, 87: 3126-3126

[8]

SiegalM. P., OvermyerD. L., KottenstetteR. J.. Appl. Phys. Lett., 2002, 80: 3940-3940

[9]

Riabkina-FishmanKarpman J., JzahaviM., DhamalincourtD. Diamond and Relat. Mater, 1994, 4: 10-10

[10]

RobertsonJ.. Diamond Relat. mater., 1995, 4: 297-297

[11]

SchwanJ., UlrichS., RothH.. J. Appl. Phys., 1999, 79: 1416-1416

[12]

FerrariA. C., RobertsonJ.. Phys. Rev. B, 2000, 61: 14095-14095

[13]

KohlerT., FrauenheimT., JungnickelG.. Phys. Rev. B, 1995, 52: 11837-11837

[14]

LopinskiG. P., MerkulovV. I., LanninJ. S.. Appl. Phys. Lett, 1996, 69: 3348-3348

[15]

NakazawaH., YamagataY., SuemitsuM.. Thin Solid Films, 2004, 467: 98-98

[16]

ChhowallaM., FerrariA. C., RobertsonJ.. Appl. Phys. Lett., 2000, 76: 1419-1419

[17]

SalisS. R., GardinerD. J., BowdenM.. Diamond Relat. Mater., 1996, 5: 589-589

[18]

MottN. F., DavisE. A.. Electronic Processes in Non-Crystalline Solids, 1979, London, Oxford University Press

[19]

WatanabeI., HasegawaS., KurataY.. Jpn. J. Appl. Phys., 1981, 21: 856-856

[20]

WagnerJ., LautenschlagerP.. J. Appl. Phys., 1986, 59: 2044-2044

[21]

SchutteS., WillS., MellH., FuhsW.. Diamond Relat. Mater., 1993, 2: 1360-1360

[22]

IrisawaT., ArimaY., KurodaT.. J. Cryst. Growth, 1990, 99: 491-491

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/