Synchronization of hyperchaotic rossler system with uncertain parameters via nonlinear control

En-zeng Dong, Zeng-qiang Chen, Zhu-zhi Yuan

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (5) : 389-391.

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (5) : 389-391. DOI: 10.1007/BF03033532
Optical Physics

Synchronization of hyperchaotic rossler system with uncertain parameters via nonlinear control

Author information +
History +

Abstract

Based on the Lyapunov stability theory, a new method for synchronization of hyperchaotic Rossler system with uncertain parameters is proposed. By this method, choosing appropriate control law and adaptive update law of uncertain parameters, all the errors of system variable synchronization and of uncertain parameter track are asymptotically stable. The theoretical analysis and the numerical simulations prove the effectiveness of the proposed method.

Cite this article

Download citation ▾
En-zeng Dong, Zeng-qiang Chen, Zhu-zhi Yuan. Synchronization of hyperchaotic rossler system with uncertain parameters via nonlinear control. Optoelectronics Letters, 2006, 2(5): 389‒391 https://doi.org/10.1007/BF03033532

References

[1]
OttE., GrebogiC., YorkeJ. A.. Physical Review letter, 1990, 64: 1196-1196
CrossRef Google scholar
[2]
LuJ. H., LuJ. N.. Chaos, Solitions Fractals, 2003, 17: 127-127
CrossRef Google scholar
[3]
HwangC. C., HsiehJ. Y., LinR. S.. Chaos, Solitions Fractals, 1997, 8: 1507-1507
CrossRef Google scholar
[4]
YassenM. T.. Chaos, Solitions Fractals, 2003, 15: 271-271
CrossRef Google scholar
[5]
LuL., CaoH. J.. Journal of Optoelectronics · Laser, 2003, 14: 1090-1090(in Chinese)
[6]
YuY. G., ZhangS. C.. Chaos, Solitions Fractals, 2004, 21: 643-643
CrossRef Google scholar
[7]
LuJ., WuX., HanX.. Phys Lett A, 2004, 22: 221-221
[8]
DongE. Z., ChenZ. Q., YuangZ. Z.. Acta Phys Sin, 2005, 54: 4578-4578(in Chinese)
[9]
YassenM. T.. Chaos, Solitions Fractals, 2005, 25: 379-379
CrossRef Google scholar
[10]
LiuD., RenH. P., KongZ. Q.. Acta phys. sin, 2003, 52: 531-531(in Chinese)
[11]
YangT., ChuaL O. Int. J. Bifurcation and Chaos, 2000, 10: 859-859
[12]
ParkJu H.. Chaos, Solitions Fractals, 2005, 25: 333-333
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/