Effect of Yb3+ concentration on Er3+ luminescence properties of sol-gelderived silica-alumina xerogels

K. Tran Ngoc , H. Pham Thanh , C. Nguyen Duc , C. Armellini , A. Chiasera , M. Ferrari , Y. Jestin , M. Montagna , E. Moser , S. Pelli , G. C. Righini

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (5) : 354 -357.

PDF
Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (5) : 354 -357. DOI: 10.1007/BF03033522
Materials

Effect of Yb3+ concentration on Er3+ luminescence properties of sol-gelderived silica-alumina xerogels

Author information +
History +
PDF

Abstract

Er3+ / Yb3+ co-doped silica-alumina monolithic xerogels were prepared with the same concentration on 2 000 Er/Si ppm and 6 000 Al/Si ppm. The Yb/Si content was varied from 0 to 4 000 ppm Densification of the samples was achieved by thermal treatment in air at 950 °C for 120 hours with a heating rate 0.1 °C/min. Photoluminescence spectroscopy was used to obtain information about the effective excitation efficiency of Er3+ ions by co-doping with Yb3+ ions. The infrared-to-visible up-conversion luminescence has been investigated upon continuous wave excitation at 980 nm. The samples exhibit red, green and blue up-conversion emission. It is found that the intensity of up-conversion luminescence increases with increasing Yb3+ doping concentration. An opposite behavior is observed for the4l13/2 luminescence of the Er3+ ions.

Cite this article

Download citation ▾
K. Tran Ngoc, H. Pham Thanh, C. Nguyen Duc, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Montagna, E. Moser, S. Pelli, G. C. Righini. Effect of Yb3+ concentration on Er3+ luminescence properties of sol-gelderived silica-alumina xerogels. Optoelectronics Letters, 2006, 2(5): 354-357 DOI:10.1007/BF03033522

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KenyonA. J.. Progress in Quantum Electronics, 2002, 26: 225-225

[2]

S. Sakka, Handbook of Sol-Gel Science and Technology Processing, Characterization and Applications, Kluwer Acad. Publ, 2005.

[3]

ChiaseraA., MontagnaM., RolliR., RonchinS., PelliS., RighiniG. C., Gonc alvesR. R., MessaddeqY., RibeiroS. J. L., ArmelliniC., FerrariM., ZampedriL.. J. Sol-Gel Sci. Tech, 2003, 26: 943-943

[4]

MonteilA., ChaussedentS., Alombert-GogetG., GaumerN., ObriotJ., RibeiroS. J. L., MessaddeqY., ChiaseraA., FerrariM.. Non-Cryst. Solids, 2004, 348: 44-44

[5]

PolmanA., van VeggelF. C. J. M.. Opt. Soc. Am. B, 2004, 21: 871-871

[6]

HehlenM. P., CockroftN. J., GosnellT. R.. Phys. Rev., 1997, B59: 9302-9302

[7]

AuzelF.. Chem. Rev, 2004, 104: 139-139

[8]

FeredighiM., Di PasqualeF.. IEEE Photonics Technol. Lett, 1995, 7: 303-303

[9]

LesterC., BjarklevA., RasmussenT., DinesenP. G.. J. Lightwave Technol, 1995, 13: 740-740

[10]

AuzelF.. Proc. IEEE, 1973, 61: 758-758

[11]

DuvergerC., MontagnaM., RolliR., RonchinS., ZampedriL., FossiM., PelliS., RighiniG. C., MonteilA., ArmelliniC., FerrariM.. J. Non-Cryst. Solids, 2001, 208: 261-261

[12]

GoncalvesR. R., CarturanG., ZampedriL., FerrariM., ChiaseraA., MontagnaM., RighiniG. C., PelliS., RibeiroS. J. L., MessaddeqY.. J. Non-Cryst. Solids, 2003, 322: 306-306

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/