Supercontinuum generation in a bragg fiber: a novel proposal

Bishnu P. Pal, Sonali Dasgupta, M. R. Shenoy, Alexej Sysoliatin

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (5) : 342-344.

Optoelectronics Letters ›› 2006, Vol. 2 ›› Issue (5) : 342-344. DOI: 10.1007/BF03033518
Devices and Applications

Supercontinuum generation in a bragg fiber: a novel proposal

Author information +
History +

Abstract

We propose a silica-core dispersion-decreasing Bragg fiber (DDBF) of mode effective area as large as 55 μm2 for supercontinuum (SC) generation at the pump wavelength of 1060 nm. Using a fast and simple matrix method to model propagation in the DDBF, we have presented a general criterion to obtain the shortest length of the DDBF that would result in a broad SC spectrum. The proposed DDBF design should be amenable for reproducible fabrication through the well-developed MCVD fiber manufacturing technology and the concept has potential for realization as a practical device.

Cite this article

Download citation ▾
Bishnu P. Pal, Sonali Dasgupta, M. R. Shenoy, Alexej Sysoliatin. Supercontinuum generation in a bragg fiber: a novel proposal. Optoelectronics Letters, 2006, 2(5): 342‒344 https://doi.org/10.1007/BF03033518

References

[1]
See e. g. G. P. Agrawal. Nonlinear Ffiber Optics, 1995, 2nd ed.San Deigo, Academic Press
[2]
LinO., StolenR. H.. App. Phys. Lett., 1976, 28: 216-216
CrossRef Google scholar
[3]
MonroT. M.PalB. P.. Microstructured optical fibersin Guided Wave Optical Components and Devices — Basics, Technology and Applications, 2006, Burlington, Elsevier, 41-70
[4]
LuF., DengY., KnoxW. H.. Opt. Lett., 2005, 30: 1566-1566
CrossRef Google scholar
[5]
BirksT. A., WadsworthW. J., RussellP. S. J.. Opt. Lett., 2000, 25: 1415-1415
CrossRef Google scholar
[6]
RankaJ. K., WindelerR. S., StentzA. J.. Opt. Lett., 2000, 25: 25-25
CrossRef Google scholar
[7]
MoriK., TakaraH., KawanishiS.. J. Opt. Soc. Am. B, 2001, 18: 1780-1780
CrossRef Google scholar
[8]
YehP., YarivA., MaromE.. J. Opt. Soc. Am., 1978, 68: 1196-1196
CrossRef Google scholar
[9]
DasguptaS., PalB. P., ShenoyM. R.PalB. P.. Photonic bandgap-guided Bragg fibers inGuided Wave Optical Components and Devices-Basics, Technology and Applications, 2006, Burlington, Elsevier, 71-82
[10]
EngenessT. D., IbanescuM., JohnsonS. G., WeifibergO., SkorobogatiyM., JacobsS., FinkY.. Opt. Express, 2003, 11: 1175-1175
CrossRef Google scholar
[11]
PalB. P., DasguptaS., ShenoyM. R.. Opt. Express, 2005, 13: 621-621
CrossRef Google scholar
[12]
DasguptaS., PalB. P., ShenoyM. R.. Opt. Lett., 2005, 30: 1917-1917
CrossRef Google scholar
[13]
BrechetF., RoyP., MarcouJ., PagnouxD.. Electron. Lett., 2000, 36: 514-514
CrossRef Google scholar
[14]
LouJ. W., XiaT. J., BoyrazO., ShiC. X., NowakG. A., IslamM. N.. Optical Fiber Communication Conference, 1997, 6: 32-32
CrossRef Google scholar
[15]
OkunoT., OnishiM., NishimuraM.. IEEE Photon. Technol. Lett., 2003, 10: 643-643
[16]
MoriK., TakaraH., KawanishiS., SaruwatariM., MoriokaT.. Electron. Lett., 1997, 33: 1806-1806
CrossRef Google scholar
[17]
ThyagarajanK., DiggaviS., TanejaA., GhatakA.. Appl. Opt., 1991, 30: 3877-3877
CrossRef Google scholar
[18]
HusakouA. V., HermannJ.. Phys. Rev. Lett., 2001, 87: 203901-203901
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/