Genome resequencing and genome-wide polymorphisms in Chinese population of Phyllotreta striolata (Coleoptera, Chrysomelidae)

Kui Wang , Beibei Cao , Changlong Shu , Jie Zhang

New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70019

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70019 DOI: 10.1002/npp2.70019
ORIGINAL PAPER

Genome resequencing and genome-wide polymorphisms in Chinese population of Phyllotreta striolata (Coleoptera, Chrysomelidae)

Author information +
History +
PDF

Abstract

The striped flea beetle, Phyllotreta striolata, is a globally notorious pest of cruciferous vegetables. In this study, we sequenced the genome of a Chinese population of P. striolata and aligned it with the reference genome from a Canadian population. Through Illumina sequencing and reference-based genome polishing, we obtained a high-quality genome of 131.31 Mb with an N50 size of 8.68 Mb. Genome comparison revealed that the Chinese and Canadian populations of P. striolata presented 175 and 122 population-specific genes, respectively. Through a genome-wide screening, six genes were identified as potential RNA interference targets influencing the development or survival of P. striolata. Additionally, we identified 1.16 million high-confidence variants in the Chinese P. striolata population, including 0.69 million single-nucleotide polymorphisms and 0.43 million insertions/deletions. Variant effect analysis and functional annotation revealed 7571 variants with high-impact effects, and the related genes were involved in various basic biological processes in P. striolata. Overall, our findings provide valuable resources for advancing genomic research on P. striolata as well as for those pursuing targeted biopesticides for effective control strategies.

Keywords

genome resequencing / InDels / Phyllotreta striolata / SNPs / variants

Cite this article

Download citation ▾
Kui Wang, Beibei Cao, Changlong Shu, Jie Zhang. Genome resequencing and genome-wide polymorphisms in Chinese population of Phyllotreta striolata (Coleoptera, Chrysomelidae). New Plant Protection, 2025, 2(3): e70019 DOI:10.1002/npp2.70019

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beran, F., Jiménez-Alemán, G. H., Lin, M. Y., Hsu, Y. C., Mewis, I., Srinivasan, R., Ulrichs, C., Boland, W., Hansson, B. S., & Reinecke, A. (2016). The aggregation pheromone of Phyllotreta striolata (Coleoptera: Chrysomelidae) revisited. Journal of Chemical Ecology, 42(8), 748-755. https://doi.org/10.1007/s10886-016-0743-6

[2]

Beran, F., Mewis, I., Srinivasan, R., Svoboda, J., Vial, C., Mosimann, H., Boland, W., Büttner, C., Ulrichs, C., Hansson, B. S., & Reinecke, A. (2011). Male Phyllotreta striolata (F.) produce an aggregation pheromone: Identification of male-specific compounds and interaction with host plant volatiles. Journal of Chemical Ecology, 37(1), 85-97. https://doi.org/10.1007/s10886-010-9899-7

[3]

Andersen, C. L., Hazzard, R., Van Driesche, R., & Mangan, F. X. (2006). Alternative management tactics for control of Phyllotreta cruciferae and Phyllotreta striolata (coleoptera: Chrysomelidae) on brassica rapa in massachusetts. Journal of Economic Entomology, 99(3), 803-810. https://doi.org/10.1603/0022-0493-99.3.803

[4]

King, R., Buer, B., Davies, T. G. E., Ganko, E., Guest, M., Hassani-Pak, K., Hughes, D., Raming, K., Rawlings, C., Williamson, M., Crossthwaite, A., Nauen, R., & Field, L. (2023). The complete genome assemblies of 19 insect pests of worldwide importance to agriculture. Pesticide Biochemistry and Physiology, 191, 105339. https://doi.org/10.1016/j.pestbp.2023.105339

[5]

Lee, Y., Schmidt, H., Collier, T. C., Conner, W. R., Hanemaaijer, M. J., Slatkin, M., Marshall, J. M., Chiu, J. C., Smartt, C. T., Lanzaro, G. C., Mulligan, F. S., & Cornel, A. J. (2019). Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC Genomics, 20(1), 204. https://doi.org/10.1186/s12864-019-5586-4

[6]

Acharya, P., Singh, U. S., Rajamannar, V., Muniaraj, M., Nayak, B., & Das, A. (2024). Genome resequencing and genome-wide polymorphisms in mosquito vectors Aedes aegypti and Aedes albopictus from South India. Scientific Reports, 14(1), 22931. https://doi.org/10.1038/s41598-024-71484-2

[7]

Quinlan, A. R., & Hall, I. M. (2010). Bedtools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841-842. https://doi.org/10.1093/bioinformatics/btq033

[8]

Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9(11), e112963. https://doi.org/10.1371/journal.pone.0112963

[9]

Waterhouse, R. M., Seppey, M., Simão, F. A., Manni, M., Ioannidis, P., Klioutchnikov, G., Kriventseva, E. V., & Zdobnov, E. M. (2018). Busco applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution, 35(3), 543-548. https://doi.org/10.1093/molbev/msx319

[10]

Xu, Z., & Wang, H. (2007). LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research, 35(Web Server), 265-268. https://doi.org/10.1093/nar/gkm286

[11]

Hubley, R., Finn, R. D., Clements, J., Eddy, S. R., Jones, T. A., Bao, W., Smit, A. F., & Wheeler, T. J. (2016). The Dfam database of repetitive DNA families. Nucleic Acids Research, 44(D1), 81-89. https://doi.org/10.1093/nar/gkv1272

[12]

Bao, W., Kojima, K. K., & Kohany, O. (2015). Repbase update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6(1), 11. https://doi.org/10.1186/s13100-015-0041-9

[13]

Tarailo-Graovac, M., & Chen, N. (2009). Using repeatmasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 25(1), 4.10.1-4.10.14. https://doi.org/10.1002/0471250953.bi0410s25

[14]

Wang, K., Li, P., Gao, Y., Liu, C., Wang, Q., Yin, J., Zhang, J., Geng, L., & Shu, C. (2019). De novo genome assembly of the white-spotted flower chafer (Protaetia brevitarsis). GigaScience, 8(4), giz019. https://doi.org/10.1093/gigascience/giz019

[15]

She, R., Chu, J. S., Wang, K., Pei, J., & Chen, N. (2009). GenBlastA: Enabling BLAST to identify homologous gene sequences. Genome Research, 19(1), 143-149. https://doi.org/10.1101/gr.082081.108

[16]

Gremme, G., Brendel, V., Sparks, M. E., & Kurtz, S. (2005). Engineering a software tool for gene structure prediction in higher organisms. Information and Software Technology, 47(15), 965-978. https://doi.org/10.1016/j.infsof.2005.09.005

[17]

Wu, T. D., & Watanabe, C. K. (2005). GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21(9), 1859-1875. https://doi.org/10.1093/bioinformatics/bti310

[18]

Birney, E., Clamp, M., & Durbin, R. (2004). Genewise and genomewise. Genome Research, 14(5), 988-995. https://doi.org/10.1101/gr.1865504

[19]

Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., & Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research, 34(Web Server), 435-439. https://doi.org/10.1093/nar/gkl200

[20]

Gabriel, L., Brůna, T., Hoff, K. J., Ebel, M., Lomsadze, A., Borodovsky, M., & Stanke, M. (2024). BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Research, 34(5), 769-777. https://doi.org/10.1101/gr.278090.123

[21]

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290-295. https://doi.org/10.1038/nbt.3122

[22]

Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., White, O., Buell, C. R., & Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biology, 9(1), R7. https://doi.org/10.1186/gb-2008-9-1-r7

[23]

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/s0022-2836(05)80360-2

[24]

Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., Martin, M. J., Michoud, K., O'Donovan, C., Phan, I., Pilbout, S., & Schneider, M. (2003). The SWISS-PROT protein knowledgebase and its supplement trembl in 2003. Nucleic Acids Research, 31(1), 365-370. https://doi.org/10.1093/nar/gkg095

[25]

Emms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1), 238. https://doi.org/10.1186/s13059-019-1832-y

[26]

Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using diamond. Nature Methods, 12(1), 59-60. https://doi.org/10.1038/nmeth.3176

[27]

Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S. Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240. https://doi.org/10.1093/bioinformatics/btu031

[28]

Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin, A. (2018). MUMmer4: A fast and versatile genome alignment system. PLoS Computational Biology, 14(1), e1005944. https://doi.org/10.1371/journal.pcbi.1005944

[29]

Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80-92. https://doi.org/10.4161/fly.19695

[30]

Mei, Y., Jing, D., Tang, S., Chen, X., Chen, H., Duanmu, H., Cong, Y., Chen, M., Ye, X., Zhou, H., He, K., & Li, F. (2021). InsectBase 2.0: A comprehensive gene resource for insects. Nucleic Acids Research, 50(1), 1040-1045. https://doi.org/10.1093/nar/gkab1090

[31]

Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P., & Huerta-Cepas, J. (2021). eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular Biology and Evolution, 38(12), 5825-5829. https://doi.org/10.1093/molbev/msab293

[32]

Poelchau, M. F., Coates, B. S., Childers, C. P., Peréz de León, A. A., Evans, J. D., Hackett, K., & Shoemaker, D. (2016). Agricultural applications of insect ecological genomics. Current Opinion in Insect Science, 13, 61-69. https://doi.org/10.1016/j.cois.2015.12.002

[33]

Coates, B. S., Walden, K. K. O., Lata, D., Vellichirammal, N. N., Mitchell, R. F., Andersson, M. N., McKay, R., Lorenzen, M. D., Grubbs, N., Wang, Y. H., Han, J., Xuan, J. L., Willadsen, P., Wang, H., French, B. W., Bansal, R., Sedky, S., Souza, D., Bunn, D., … Robertson, H. M. (2023). A draft Diabrotica virgifera virgifera genome: Insights into control and host plant adaption by a major maize pest insect. BMC Genomics, 24(1), 19. https://doi.org/10.1186/s12864-022-08990-y

[34]

Schmidt, T. L., Endersby-Harshman, N. M., & Hoffmann, A. A. (2021). Improving mosquito control strategies with population genomics. Trends in Parasitology, 37(10), 907-921. https://doi.org/10.1016/j.pt.2021.05.002

[35]

Li, F., Zhao, X., Li, M., He, K., Huang, C., Zhou, Y., Li, Z., & Walters, J. R. (2019). Insect genomes: Progress and challenges. Insect Molecular Biology, 28(6), 739-758. https://doi.org/10.1111/imb.12599

[36]

Pélissié, B., Crossley, M. S., Cohen, Z. P., & Schoville, S. D. (2018). Rapid evolution in insect pests: The importance of space and time in population genomics studies. Current Opinion in Insect Science, 26, 8-16. https://doi.org/10.1016/j.cois.2017.12.008

[37]

Chen, D., Yan, R., Xu, Z., Qian, J., Yu, Y., Zhu, S., Wu, H., Zhu, G., & Chen, M. (2022). Silencing of dre4 contributes to mortality of Phyllotreta striolata. Insects, 13(11), 1072. https://doi.org/10.3390/insects13111072

[38]

Jinshi, Z., Mei, L., Jinjin, L., & Weilin, Z. (2024). Genome-wide selection of potential target candidates for RNAi against Nilaparvata lugens. BMC Genomics, 25(1), 1036. https://doi.org/10.1186/s12864-024-10940-9

[39]

Zhu, J., Hao, P., Lu, C., Ma, Y., Feng, Y., & Yu, X. (2017). Expression and RNA interference of ribosomal protein l5 gene in Nilaparvata lugens (Hemiptera: Delphacidae). Journal of Insect Science, 17(3), 73. https://doi.org/10.1093/jisesa/iex047

[40]

Wondji, C. S., Hemingway, J., & Ranson, H. (2007). Identification and analysis of single nucleotide polymorphisms (SNPs) in the mosquito Anopheles funestus, malaria vector. BMC Genomics, 8(1), 5. https://doi.org/10.1186/1471-2164-8-5

[41]

Fang, F., Chen, X., Lv, J., Shi, X., Feng, X., Wang, Z., & Li, X. (2022). Population structure and genetic diversity of Chinese honeybee (Apis cerana cerana) in central China. Genes, 13(6), 1007. https://doi.org/10.3390/genes13061007

[42]

Babbitt, G. A., & Schulze, K. V. (2012). Codons support the maintenance of intrinsic DNA polymer flexibility over evolutionary timescales. Genome Biology and Evolution, 4(9), 954-965. https://doi.org/10.1093/gbe/evs073

[43]

Stoltzfus, A., & Norris, R. W. (2016). On the causes of evolutionary transition:transversion bias. Molecular Biology and Evolution, 33(3), 595-602. https://doi.org/10.1093/molbev/msv274

[44]

Brookes, A. J. (1999). The essence of snps. Gene, 234(2), 177-186. https://doi.org/10.1016/s0378-1119(99)00219-x

[45]

Barreiro, L. B., Laval, G., Quach, H., Patin, E., & Quintana-Murci, L. (2008). Natural selection has driven population differentiation in modern humans. Nature Genetics, 40(3), 340-345. https://doi.org/10.1038/ng.78

[46]

Beran, F., Pauchet, Y., Kunert, G., Reichelt, M., Wielsch, N., Vogel, H., Reinecke, A., Svatoš, A., Mewis, I., Schmid, D., Ramasamy, S., Ulrichs, C., Hansson, B. S., Gershenzon, J., & Heckel, D. G. (2014). Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7349-7354. https://doi.org/10.1073/pnas.1321781111

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/