Recommended dosage and environmental risk assessment of insecticides registered on main pyralid borers in China

Haoyu Shi , Liangang Mao , Muhammad Umair Sial , Lan Zhang , Lizhen Zhu , Chi Wu , Shankui Yuan , Yongquan Zheng , Xingang Liu

New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70017

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70017 DOI: 10.1002/npp2.70017
ORIGINAL PAPER

Recommended dosage and environmental risk assessment of insecticides registered on main pyralid borers in China

Author information +
History +
PDF

Abstract

This study aims to provide data support for pesticide risk management and scientific use on main pyralid borers. Based on the data registered for controlling nine key borers, active ingredients with high dosages were identified and analyzed according to their formulations and target pests, and environmental risk of pesticides on the typical non-target organism honeybee was assessed. The entries of insecticides registered for controlling the rice leaf folder and rice stem borer were significantly higher than those for other borers. The top four insecticides, top four crops, and top five borers associated with the highest dosage, median dose, and dosage range of single insecticides were selected for further study. Significant issues were noted, including wide variations in recommended dosages for three combinations (carbosulfan–sugarcane–sugarcane borer, bisultap–sugarcane borer, and phoxim–sugarcane–sugarcane borer) and unusually high dosage points in the chlorpyrifos–rice–rice stem borer combination, likely because of differences in formulations and manufacturers. Environmental risk assessment indicated that risk levels varied by pesticide category and application method. Bisultap, cartap, monosultap, dimethoate, and phoxim exhibited lower risk in soil or seed treatment scenarios compared to spraying scenarios. To reduce use and curb resistance development, high-efficiency low-risk insecticides at the minimum effective dose are recommended.

Keywords

beet webworm / corn borer / environmental risk assessment / high efficiency and low risk / minimum effective dose / rice stem borer / sugarcane borer

Cite this article

Download citation ▾
Haoyu Shi, Liangang Mao, Muhammad Umair Sial, Lan Zhang, Lizhen Zhu, Chi Wu, Shankui Yuan, Yongquan Zheng, Xingang Liu. Recommended dosage and environmental risk assessment of insecticides registered on main pyralid borers in China. New Plant Protection, 2025, 2(3): e70017 DOI:10.1002/npp2.70017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng, Y., Hu, M., Kang, A., Xiao, Y., Luo, L., & Jiang, X. (2023). The sex ratio indicates the conclusion and onset of population cycles in the beet webworm Loxostege sticticalis L. (Lepidoptera: Pyralidae). Insects, 14(10), 781. https://doi.org/10.3390/insects14100781

[2]

Wang, Y., Zhao, W., Han, S., Wang, L., Chang, X., Liu, K., Quan, Y., Wang, Z., & He, K. (2023). Seven years of monitoring susceptibility to Cry1Ab and Cry1F in Asian corn borer. Toxins, 15(2), 137. https://doi.org/10.3390/toxins15020137

[3]

Quan, P., Li, M., Wang, G., Gu, L., & Liu, X. (2020). Comparative transcriptome analysis of the rice leaf folder (Cnaphalocrocis medinalis) to heat acclimation. BMC Genomics, 21(1), 450. https://doi.org/10.1186/s12864-020-06867-6

[4]

Yao, R., Zhao, D., Zhang, S., Zhou, L., Wang, X., Gao, C., & Wu, S. (2017). Monitoring and mechanisms of insecticide resistance in Chilo suppressalis (Lepidoptera: Crambidae), with special reference to diamides. Pest Management Science, 73(6), 1169-1178. https://doi.org/10.1002/ps.4439

[5]

Zhou, S., Luo, G., Yang, Q., Han, Y., Yuan, K., Ji, R., & Fang, J. (2024). A chromosome-level genome assembly of yellow stem borer (Scirpophaga incertulas). Scientific Data, 11(1), 279. https://doi.org/10.1038/s41597-024-03108-3

[6]

Hang, P. L. B., Linh, N. N., Ha, N. H., Dong, N. V., & Hien, L. T. T. (2021). Genome sequence of a Vietnamese Bacillus thuringiensis strain TH19 reveals two potential insecticidal crystal proteins against Etiella zinckenella larvae. Biological Control, 152, 104473. https://doi.org/10.1016/j.biocontrol.2020.104473

[7]

Yi, J., Liu, J., Mao, Y., Cheng, Y., Lin, M., Xu, H., An, Y., Li, J., & Wu, H. (2024). The complete mitochondrial genome of Chilo infuscatellus (Lepidoptera: Pyralidae), and related phylogenetic analysis. Biochemical Genetics, 62(6), 4380-4395. https://doi.org/10.1007/s10528-023-10639-8

[8]

Moghbeli Gharaei, A., Ziaaddini, M., Frérot, B., Nejad Ebrahimi, S., Jalali, M. A., & Reddy, G. V. P. (2020). Identification and evaluation of four cucurbitaceous host plant volatiles attractive to Diaphania indica (Saunders) (Lep.: Pyralidae). Chemoecology, 30(4), 173-182. https://doi.org/10.1007/s00049-020-00308-2

[9]

Gao, B., Peng, Y., Jin, M., Zhang, L., Han, X., Wu, C., Yuan, H., Awawing, A., Zheng, F., Li, X., & Xiao, Y. (2023). Chromosome genome assembly and whole genome sequencing of 110 individuals of Conogethes punctiferalis (Guenée). Scientific Data, 10(1), 805. https://doi.org/10.1038/s41597-023-02730-x

[10]

Pan, X., Dong, F., Wu, X., Xu, J., Liu, X., & Zheng, Y. (2019). Progress of the discovery, application, and control technologies of chemical pesticides in China. Journal of Integrative Agriculture, 18(4), 840-853. https://doi.org/10.1016/S2095-3119(18)61929-X

[11]

Sun, Y., Liu, S., Ling, Y., Wang, L., Ni, H., Guo, D., Dong, B., Huang, Q., Long, L., Zhang, S., Wu, S., & Gao, C. (2023). Insecticide resistance monitoring of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and its mechanism to chlorantraniliprole. Pest Management Science, 79(9), 3290-3299. https://doi.org/10.1002/ps.7512

[12]

Ren, Z., Guo, Y., Wang, Y., Li, Y., Yuan, H., & Zhang, S. (2024). Monitoring, evaluation and control countermeasures of agricultural pest resistance in China in 2023. China Plant Protection, 44, 69-76. https://doi.org/10.3969/j.issn.1672-6820.2024.05.014

[13]

Xu, L., Zhao, J., Xu, D., Xu, G., Peng, Y., & Zhang, Y. (2024). New insights into chlorantraniliprole metabolic resistance mechanisms mediated by the striped rice borer cytochrome P450 monooxygenases: A case study of metabolic differences. Science of the Total Environment, 912, 169229. https://doi.org/10.1016/j.scitotenv.2023.169229

[14]

Zhu, Z., Cheng, J., Zuo, W., Lin, X., Guo, Y., Jiang, Y., Wu, X., Teng, K., Zhai, B., Luo, J., Jiang, X., & Tang, Z. (2007). Integrated management of rice stem borers in the Yangtze Delta, China (pp. 373–382). Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-1-4020-6059-5_35

[15]

Su, C., Li, C., Cai, T., Xie, Y., He, S., Ma, K., Wan, H., Zhou, H., & Li, J. (2024). Resistance monitoring in field populations of Chilo suppressalis (Lepidoptera: Crambidae) in Hubei Province to four insecticides in 2019–2022. Journal of Applied Entomology, 148(3), 272-278. https://doi.org/10.1111/jen.13152

[16]

Zhang, C., Hu, R., Shi, G., Jin, Y., Robson, M. G., & Huang, X. (2015). Overuse or underuse? An observation of pesticide use in China. Science of the Total Environment, 538, 1-6. https://doi.org/10.1016/j.scitotenv.2015.08.031

[17]

El Afandi, G., Ismael, H., & Fall, S. (2024). A hybrid modeling approach for estimating the exposure to organophosphate pesticide drift in Sangamon County, Illinois. Sustainability, 16(7), 2908. https://doi.org/10.3390/su16072908

[18]

El Afandi, G., & Irfan, M. (2024). Pesticides risk assessment review: Status, modeling approaches, and future perspectives. Agronomy, 14(10), 2299. https://doi.org/10.3390/agronomy14102299

[19]

European Food Safety Authority. (2015). Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA Journal, 13(11), 4302. https://doi.org/10.2903/j.efsa.2015.4302

[20]

He, W., & Xie, Y. (2024). Acute toxicity and primary risk assessment of tembotrione·atrazine 23.5% OD to 4 environmental organisms. Agrochemicals, 63(6), 424-429. https://doi.org/10.16820/j.nyzz.2024.0607

[21]

Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., & Desneux, N. (2016). Are bee diseases linked to pesticides? A brief review. Environment International, 89, 7-11. https://doi.org/10.1016/j.envint.2016.01.009

[22]

Henry, M., Béguin, M., Requier, F., Rollin, O., Odoux, J. F., Aupinel, P., Aptel, J., Tchamitchian, S., & Decourtye, A. (2012). A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079), 348-350. https://doi.org/10.1126/science.1215039

[23]

Woodcock, B. A., Bullock, J. M., Shore, R. F., Heard, M. S., Pereira, M. G., Redhead, J., Ridding, L., Dean, H., Sleep, D., Henrys, P., Peyton, J., Hulmes, S., Hulmes, L., Sárospataki, M., Saure, C., Edwards, M., Genersch, E., Knäbe, S., & Pywell, R. F. (2017). Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 356(6345), 1393-1395. https://doi.org/10.1126/science.aaa1190

[24]

Mao, L., Guo, M., Yuan, S., Zhang, L., Jiang, H., & Liu, X. (2022). Analysis on the status of insecticides registered on small insects of fruits and vegetables in China based on recommended dosage. Scientia Agricultura Sinica, 55, 2161-2173. https://doi.org/10.3864/j.issn.0578-1752.2022.11.007

[25]

Moreira-Filho, J. T., Braga, R. C., Lemos, J. M., Alves, V. M., Borba, J. V. V. B., Costa, W. S., Kleinstreuer, N., Muratov, E. N., Andrade, C. H., & Neves, B. J. (2021). BeeToxAI: An artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees. Artificial Intelligence in the Life Sciences, 1, 100013. https://doi.org/10.1016/j.ailsci.2021.100013

[26]

MOA. (2016). Guidance on environmental risk assessment for pesticide registration part 4: Honeybees: NY/T 2882.4-2016. Beijing. China Agricultural Publishing House. https://std.samr.gov.cn/hb/search/stdHBDetailed?id=AEDF98931B6B390FE053297BE0A0AF0A0

[27]

Guo, X., Sun, Z., Zhao, R., Shang, H., Liu, J., Xu, Y., Liu, L., & Wu, X. (2023). Water-based environmentally friendly pesticide formulations based on cyclodextrin/pesticide loading system. Journal of Renewable Materials, 11(2), 777-789. https://doi.org/10.32604/jrm.2022.022811

[28]

Shao, X., Li, Z., & Qian, X. (2021). Chapter 3 - Research and development of green pesticides in China. In P. Maienfisch & S. Mangelinckx (Eds.), Recent highlights in the discovery and optimization of crop protection products (pp. 39-64). Academic Press. https://doi.org/10.1016/B978-0-12-821035-2.00005-X

[29]

Wang, W., Xie, L., Zhong, Y., Li, C., Peng, W., Wu, Z., & Shi, X. (2022). Screening of effective pesticides for control of important diseases and insect pests of double cropping rice in Jiangxi. Plant Protection, 48, 312-319. https://doi.org/10.16688/j.zwbh.2020534

[30]

Mantzoukas, S., Kosmidou, G., Gekas, A., Kitsiou, F., Eliopoulos, P. A., & Patakioutas, G. (2022). A preliminary analysis on the insecticidal effect of cyantraniliprole against stored-product pests. Applied Sciences, 12(3), 1297. https://doi.org/10.3390/app12031297

[31]

Wang, R., Wang, J., Che, W., & Luo, C. (2018). First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China. Journal of Integrative Agriculture, 17(1), 158-163. https://doi.org/10.1016/S2095-3119(16)61613-1

[32]

Wang, Q., Sun, Z., Huang, Z., Ma, S., Chen, K., & Ju, X. (2023). Effects of tolfenpyrad exposure on development and response mechanism in the silkworm, Bombyx mori. Pesticide Biochemistry and Physiology, 189, 105280. https://doi.org/10.1016/j.pestbp.2022.105280

[33]

Shu, H., Lin, Y., Zhang, Z., Qiu, L., Ding, W., Gao, Q., Xue, J., Li, Y., & He, H. (2023). The transcriptomic profile of Spodoptera frugiperda differs in response to a novel insecticide, cyproflanilide, compared to chlorantraniliprole and avermectin. BMC Genomics, 24(1), 3. https://doi.org/10.1186/s12864-022-09095-2

[34]

Xia, J., Latchininsky, A., Hadi, B., & Elkahky, M. (2022). Sustainable plant pest management through optimization and minimization. Frontiers of Agricultural Science and Engineering, 9(1), 161-166. https://doi.org/10.15302/J-FASE-2021426

[35]

Liu, S., Zhang, J., Li, R., Zhang, C., Wang, L., Liang, H., Feng, G., & Xiong, D. (2023). Triazophos exposure on maternal Daphnia magna at environmental-related concentrations revealed toxic effects to its offspring. Pesticide Biochemistry and Physiology, 196, 105607. https://doi.org/10.1016/j.pestbp.2023.105607

[36]

Yang, F., Li, Y., Ren, F., Wang, R., & Pang, G. (2019). Toxicity, residue, degradation and detection methods of the insecticide triazophos. Environmental Chemistry Letters, 17(4), 1769-1785. https://doi.org/10.1007/s10311-019-00910-z

[37]

Malysh, J. M., Chertkova, E. A., & Tokarev, Y. S. (2021). The microsporidium Nosema pyrausta as a potent microbial control agent of the beet webworm Loxostege sticticalis. Journal of Invertebrate Pathology, 186, 107675. https://doi.org/10.1016/j.jip.2021.107675

[38]

Pu, J., & Chung, H. (2024). New and emerging mechanisms of insecticide resistance. Current Opinion in Insect Science, 63, 101184. https://doi.org/10.1016/j.cois.2024.101184

[39]

Guo, S., He, F., Song, B., & Wu, J. (2021). Future direction of agrochemical development for plant disease in China. Food and Energy Security, 10(4). e293. https://doi.org/10.1002/fes3.293

[40]

Madgwick, P. G., & Kanitz, R. (2024). What is the value of rotations to insecticide resistance management? Pest Management Science, 80(4), 1671-1680. https://doi.org/10.1002/ps.7939

[41]

Na, H., Yan, X., Xing, R., & Jiang, A. (2024). The empirical effect of agricultural social services on pesticide inputs. Scientific Reports, 14(1), 15907. https://doi.org/10.1038/s41598-024-67016-7

[42]

FAO and WHO. (2016). International code of conduct on pesticide management-guidelines on highly hazardous pesticides. Food and Agriculture Organization of the United Nations. https://iris.who.int/bitstream/handle/10665/205561/9789241510417_eng.pdf

[43]

EPPO. (2012). Minimum effective dose. Bulletin OEPP/EPPO Bulletin, 42(3), 403-404. https://doi.org/10.1111/epp.2612

[44]

Zheng, Y., Sun, H., Dong, F., Liu, Y., Jiang, H., & Liu, X. (2012). High-efficiency and low-risk is the only way for pesticide development. Plant Protection, 38, 1-3. https://doi.org/10.3969/j.issn.0529-1542.2012.02.001

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/