Large-scale exploration of relationships between microbial community characteristics and insecticide resistance in three wheat aphid species

Xinan Li , Chao Wang , Decai Jin , Tomislav Cernava , Xun Zhu

New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70015

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70015 DOI: 10.1002/npp2.70015
ORIGINAL PAPER

Large-scale exploration of relationships between microbial community characteristics and insecticide resistance in three wheat aphid species

Author information +
History +
PDF

Abstract

Insect symbionts play an important role in host physiology and biochemistry. The impact of environmental factors on insect microbiomes and the role of symbionts in host resistance to insecticides in large-scale fields remain unclear. Here, we explore potential relationships between bacterial communities, environmental factors, and insecticide resistance in three significant aphid species: Sitobion avenae, Rhopalosiphum padi, and Metopolophium dirhodum. Our findings indicate that the three aphid species exhibit similar microbial diversity, whereas notable differences in microbial composition exist, along with a decline in microbial community similarity as geographical distance increased. R. padi displayed a simpler microbial network structure compared to S. avenae and M. dirhodum, and most of its network nodes were attributed to Buchnera. Altitude and temperature were identified as crucial factors that affect the diversity and structure of symbionts in the three aphid species. In addition, we also observed that wheat aphid symbionts' diversity, abundance, and network structure relate to insecticide resistance. Environmental factors, particularly altitude and temperature, primarily influence host resistance to insecticides by affecting the abundance of the dominant symbiont (Buchnera) and the overall symbiont community. Our study provides a more comprehensive understanding of the interplay between environmental factors, symbiotic bacteria, and insecticide resistance in wheat aphids.

Keywords

environmental factors / insecticide resistance / large-scale study / symbiont / wheat aphids

Cite this article

Download citation ▾
Xinan Li, Chao Wang, Decai Jin, Tomislav Cernava, Xun Zhu. Large-scale exploration of relationships between microbial community characteristics and insecticide resistance in three wheat aphid species. New Plant Protection, 2025, 2(3): e70015 DOI:10.1002/npp2.70015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mohr, K. I., & Tebbe, C. C. (2006). Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental Microbiology, 8(2), 258-272. https://doi.org/10.1111/j.1462-2920.2005.00893.x

[2]

Baumann, P. (2005). Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annual Review of Microbiology, 59(1), 155-189. https://doi.org/10.1146/annurev.micro.59.030804.121041

[3]

Oliver, K. M., Smith, A. H., & Russell, J. A. (2009). Defensive symbiosis in the real world–advancing ecological studies of heritable, protective bacteria in aphids and beyond. Functional Ecology, 28(2), 341-355. https://doi.org/10.1111/1365-2435.12133

[4]

Oliver, K. M., Degnan, P. H., Hunter, M. S., & Moran, N. A. (2009). Bacteriophages encode factors required for protection in a symbiotic mutualism. Science, 325(5943), 992-994. https://doi.org/10.1126/science.1174463

[5]

Oliver, K. M., Degnan, P. H., Burke, G. R., & Moran, N. A. (2010). Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annual Review of Entomology, 55(1), 247-266. https://doi.org/10.1146/annurev-ento-112408-085305

[6]

Kaltenpoth, M. (2009). Actinobacteria as mutualists: General healthcare for insects? Trends in Microbiology, 17(12), 529-535. https://doi.org/10.1016/j.tim.2009.09.006

[7]

Kaltenpoth, M., Göttler, W., Herzner, G., & Strohm, E. (2005). Symbiotic bacteria protect wasp larvae from fungal infestation. Current Biology, 15(5), 475-479. https://doi.org/10.1016/j.cub.2004.12.084

[8]

Dunbar, H. E., Wilson, A. C. C., Ferguson, N. R., & Moran, N. A. (2007). Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biology, 5(5), e96. https://doi.org/10.1371/journal.pbio.0050096

[9]

Tsuchida, T., Koga, R., Matsumoto, S., & Fukatsu, T. (2011). Interspecific symbiont transfection confers a novel ecological trait to the recipient insect. Biological Letters, 7(2), 245-248. https://doi.org/10.1098/rsbl.2010.0699

[10]

Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., & Fukatsu, T. (2012). Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8618-8622. https://doi.org/10.1073/pnas.1200231109

[11]

Duan, X. Z., Sun, J. T., Wang, L. T., Shu, X. H., Guo, Y., Keiichiro, M., Zhu, Y. X., Bing, X. L., Hoffmann, A. A., & Hong, X. Y. (2020). Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. Microbiome, 8(1), 104. https://doi.org/10.1186/s40168-020-00878-x

[12]

Zhang, X. Y., Sukhchuluun, G., Bo, T., Chi, Q., Yang, J., Chen, B., Zhang, L., & Wang, D. (2018). Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure. Microbiome, 6(1), 103. https://doi.org/10.1186/s40168-018-0473-9

[13]

Zhu, L., Wu, Q., Dai, J., Zhang, S., & Wei, F. (2011). Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 108(43), 17714-17719. https://doi.org/10.1073/pnas.1017956108

[14]

Zhu, Y., Song, Y., Zhang, Y., Hoffmann, A. A., Zhou, J., Sun, J., Hong, X., & Schottel, J. L. (2018). Incidence of facultative bacterial endosymbionts in spider mites associated with local environments and host plants. Applied and Environmental Microbiology, 84(6), e02546–02517. https://doi.org/10.1128/aem.02546-17

[15]

Moro, C. V., Tran, F. H., Raharimalala, F. N., Ravelonandro, P., & Mavingui, P. (2013). Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiology, 13(1), 70. https://doi.org/10.1186/1471-2180-13-70

[16]

Ramírez-Puebla, S. T., Rosenblueth, M., Chávez-Moreno, C. K., Catanho Pereira de Lyra, M. C., Tecante, A., & Martínez-Romero, E. (2010). Molecular phylogeny of the genus Dactylopius (Hemiptera: Dactylopiidae) and identification of the symbiotic bacteria. Environmental Entomology, 39(4), 1178-1183. https://doi.org/10.1603/en10037

[17]

Brinker, P., Fontaine, M. C., Beukeboom, L. W., & Falcao Salles, J. (2019). Host, symbionts, and the microbiome: The missing tripartite interaction. Trends in Microbiology, 27(6), 480-488. https://doi.org/10.1016/j.tim.2019.02.002

[18]

Jones, R. M., Desai, C., Darby, T. M., Luo, L., Wolfarth, A. A., Scharer, C. D., Ardita, C. S., Reedy, A. R., Keebaugh, E. S., & Neish, A. S. (2015). Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Reports, 12(8), 1217-1225. https://doi.org/10.1016/j.celrep.2015.07.042

[19]

Skaljac, M., Kirfel, P., Grotmann, J., & Vilcinskas, A. (2018). Fitness costs of infection with Serratia symbiotica are associated with greater susceptibility to insecticides in the pea aphid Acyrthosiphon pisum. Pest Management Science, 74(8), 1829-1836. https://doi.org/10.1002/ps.4881

[20]

Kontsedalov, S., Zchori-Fein, E., Chiel, E., Gottlieb, Y., Inbar, M., & Ghanim, M. (2008). The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Management Science, 64(8), 789-792. https://doi.org/10.1002/ps.1595

[21]

Gong, P., Chen, D., Wang, C., Li, M., Li, X., Zhang, Y., Li, X., & Zhu, X. (2020). Susceptibility of four species of aphids in wheat to seven insecticides and its relationship to detoxifying enzymes. Frontiers in Physiology, 11, 623612. https://doi.org/10.3389/fphys.2020.623612

[22]

Gong, P., Li, X., Gao, H., Wang, C., Li, M., Zhang, Y., Li, X., Liu, E., & Zhu, X. (2021). Field evolved resistance to pyrethroids, neonicotinoids, organophosphates and macrolides in Rhopalosiphum padi (Linnaeus) and Sitobion avenae (Fabricius) from China. Chemosphere, 269, 128747. https://doi.org/10.1016/j.chemosphere.2020.128747

[23]

Deng, D., Duan, W., Wang, H., Zhang, K., Guo, J., Yuan, L., Wang, L., & Wu, S. (2019). Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus). Ecotoxicology, 28(7), 825-833. https://doi.org/10.1007/s10646-019-02080-8

[24]

Zhang, L., Lu, H., Guo, K., Yao, S., & Cui, F. (2017). Insecticide resistance status and detoxification enzymes of wheat aphids Sitobion avenae and Rhopalosiphum padi. Science China Life Sciences, 60(8), 927-930. https://doi.org/10.1007/s11427-017-9105-x

[25]

Denholm, I., Devine, G. J., & Williamson, M. S. (2002). Insecticide resistance on the move. Science, 297(5590), 2222-2223. https://doi.org/10.1126/science.1077266

[26]

Li, Q., Sun, J., Qin, Y., Fan, J., Zhang, Y., Tan, X., Hou, M., & Chen, J. (2021). Reduced insecticide susceptibility of the wheat aphid Sitobion miscanthi after infection by the secondary bacterial symbiont Hamiltonella defensa. Pest Management Science, 77(4), 1936-1944. https://doi.org/10.1002/ps.6221

[27]

Gong, P., Li, X., Wang, C., Zhu, S., Li, Q., Zhang, Y., Li, X., Li, G., Liu, E., Gao, H., Yang, X., & Zhu, X. (2021). The sensitivity of field populations of Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) to seven insecticides in Northern China. Agronomy, 11(8), 1556. https://doi.org/10.3390/agronomy11081556

[28]

Wang, C., Li, X., Jin, D., Gong, P., Li, Q., Zhang, Y., Li, X., Deng, Y., Cernava, T., & Zhu, X. (2022). Implications of environmentally shaped microbial communities for insecticide resistance in Sitobion miscanthi. Environmental Research, 215(Pt 2), 114409. https://doi.org/10.1016/j.envres.2022.114409

[29]

Feng, K., Zhang, Z., Cai, W., Liu, W., Xu, M., Yin, H., Wang, A., He, Z., & Deng, Y. (2017). Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 26(21), 6170-6182. https://doi.org/10.1111/mec.14356

[30]

Magoc, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957-2963. https://doi.org/10.1093/bioinformatics/btr507

[31]

Kong, Y. (2011). Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics, 98(2), 152-153. https://doi.org/10.1016/j.ygeno.2011.05.009

[32]

Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996-998. https://doi.org/10.1038/nmeth.2604

[33]

Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261-5267. https://doi.org/10.1128/AEM.00062-07

[34]

Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35(21), 7188-7196. https://doi.org/10.1093/nar/gkm864

[35]

Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., & Zhi, X. (2010). Functional molecular ecological networks. mBio, 1(4), e00169–00110. https://doi.org/10.1128/mBio.00169-10

[36]

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. In Proceedings of the Third International Conference on Weblogs and Social Media. https://doi.org/10.13140/2.1.1341.1520

[37]

Wemheuer, F., Taylor, J. A., Daniel, R., Johnston, E., Meinicke, P., Thomas, T., & Wemheuer, B. (2020). Tax4Fun2: Prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome, 15(1), 11. https://doi.org/10.1186/s40793-020-00358-7

[38]

Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., Zhang, M., Oh, P. L., Nehrenberg, D., Hua, K., Kachman, S. D., Moriyama, E. N., Walter, J., Peterson, D. A., & Pomp, D. (2010). Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences of the United States of America, 107(44), 18933-18938. https://doi.org/10.1073/pnas.1007028107

[39]

Park, R., Dzialo, M. C., Spaepen, S., Nsabimana, D., Gielens, K., Devriese, H., Crauwels, S., Tito, R. Y., Raes, J., Lievens, B., & Verstrepen, K. J. (2019). Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome, 7(1), 147. https://doi.org/10.1186/s40168-019-0748-9

[40]

Deng, Y., Jiang, Y., Yang, Y., He, Z., Luo, F., & Zhou, J. (2012). Molecular ecological network analyses. BMC Bioinformatics, 13(1), 113. https://doi.org/10.1186/1471-2105-13-113

[41]

Nakabachi, A., & Ishikawa, H. (1997). Differential display of mRNAs related to amino acid metabolism in the endosymbiotic system of aphids. Insect Biochemistry and Molecular Biology, 27(12), 1057-1062. https://doi.org/10.1016/s0965-1748(97)00092-1

[42]

Douglas, A. E., Minto, L. B., & Wilkinson, T. L. (2001). Quantifying nutrient production by the microbial symbionts in an aphid. Journal of Experimental Biology, 204(2), 349-358. https://doi.org/10.1242/jeb.204.2.349

[43]

Zhang, Y., Cai, T., Ren, Z., Liu, Y., Yuan, M., Cai, Y., Yu, C., Shu, R., He, S., Li, J., Wong, A. C. N., & Wan, H. (2021). Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. The ISME Journal, 15(12), 3693-3703. https://doi.org/10.1038/s41396-021-01046-1

[44]

Zhang, Y., Cai, T., Yuan, M., Li, Z., Jin, R., Ren, Z., Qin, Y., Yu, C., Cai, Y., Shu, R., He, S., Li, J., Wong, A. C. N., & Wan, H. (2023). Microbiome variation correlates with the insecticide susceptibility in different geographic strains of a significant agricultural pest, Nilaparvata lugens. NPJ Biofilms and Microbiomes, 9(1), 2. https://doi.org/10.1038/s41522-023-00369-5

[45]

Li, Q., Fan, J., Sun, J. X., Wang, M. Q., Chen, J., & Lian (2018). Effect of the secondary symbiont Hamiltonella defensa on fitness and relative abundance of Buchnera aphidicola of weat aphid, Sitobion miscanthi. Frontiers in Microbiology, 9, 582. https://doi.org/10.3389/fmicb.2018.00582

[46]

Maurice, C. F., Knowles, S. C. L., Ladau, J., Pollard, K. S., Fenton, A., Pedersen, A. B., & Turnbaugh, P. J. (2015). Marked seasonal variation in the wild mouse gut microbiota. The ISME Journal, 9(11), 2423-2434. https://doi.org/10.1038/ismej.2015.53

[47]

Li, J., Shen, Z., Li, C., Kou, Y., Wang, Y., Tu, B., Zhang, S., & Li, X. (2018). Stair-step pattern of soil bacterial diversity mainly driven by pH and vegetation types along the elevational gradients of Gongga Mountain, China. Frontiers in Microbiology, 9, 569. https://doi.org/10.3389/fmicb.2018.00569

[48]

Corbin, C., Heyworth, E. R., Ferrari, J., & Hurst, G. D. D. (2016). Heritable symbionts in a world of varying temperature. Heredity, 118(1), 10-20. https://doi.org/10.1038/hdy.2016.71

[49]

Kikuchi, Y., Tada, A., Musolin, D. L., Hari, N., Hosokawa, T., Fujisaki, K., Fukatsu, T., McFall-Ngai, M. J., Goffredi, S., & Salem, H. (2016). Collapse of insect gut symbiosis under simulated climate change. mBio, 7(5), e01578–01516. https://doi.org/10.1128/mBio.01578-16

[50]

Li, X., Sun, Y., Tian, X., Wang, C., Li, Q., Li, Q., Zhu, S., Lan, C., Zhang, Y., Li, X., Ding, R., & Zhu, X. (2022). Sitobion miscanthi l type symbiont enhances the fitness and feeding behavior of the host grain aphid. Pest Management Science, 79(4), 1362-1371. https://doi.org/10.1002/ps.7308

[51]

Ben-Yosef, M., Pasternak, Z., Jurkevitch, E., & Yuval, B. (2014). Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. Journal of Evolutionary Biology, 27(12), 2695-2705. https://doi.org/10.1111/jeb.12527

[52]

Ben-Yosef, M., Pasternak, Z., Jurkevitch, E., & Yuval, B. (2015). Symbiotic bacteria enable olive fly larvae to overcome host defences. Royal Society Open Science, 2(7), 150170. https://doi.org/10.1098/rsos.150170

[53]

Matsuzaki, R., Gunnigle, E., Geissen, V., Clarke, G., Nagpal, J., & Cryan, J. F. (2023). Pesticide exposure and the microbiota-gut-brain axis. The ISME Journal, 17(8), 1153-1166. https://doi.org/10.1038/s41396-023-01450-9

[54]

Cheng, D., Guo, Z., Riegler, M., Xi, Z., Liang, G., & Xu, Y. (2017). Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome, 5(1), 13. https://doi.org/10.1186/s40168-017-0236-z

[55]

Cai, T., Zhang, Y., Liu, Y., Deng, X., He, S., Li, J., & Wan, H. (2021). Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress. Insect Science, 28(2), 355-362. https://doi.org/10.1111/1744-7917.12834

[56]

Guo, S., Gong, Y., Chen, J., Shi, P., Cao, L., Yang, Q., Hoffmann, A. A., & Wei, S. (2020). Increased density of endosymbiotic Buchnera related to pesticide resistance in yellow morph of melon aphid. Journal of Pest Science, 93(4), 1281-1294. https://doi.org/10.1007/s10340-020-01248-0

[57]

Xia, X., Sun, B., Gurr, G. M., Vasseur, L., Xue, M., & You, M. (2018). Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology, 9, 25. https://doi.org/10.3389/fmicb.2018.00025

[58]

Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12795-12800. https://doi.org/10.1073/pnas.0506131102

[59]

Ma, W., Zheng, X., Li, L., Shen, J., Li, W., & Gao, Y. (2020). Changes in the gut microbiota of honey bees associated with jujube flower disease. Ecotoxicology and Environmental Safety, 198, 110616. https://doi.org/10.1016/j.ecoenv.2020.110616

[60]

Pang, R., Chen, M., Yue, L., Xing, K., Li, T. C., Kang, K., Liang, Z. K., Yuan, L. Y., & Zhang, W. Q. (2018). A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS Genetics, 14(10), e1007725. https://doi.org/10.1371/journal.pgen.1007725

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/